Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Added 8 bit weights compression by default for decoders larger than 1B #444

Merged
merged 6 commits into from
Oct 3, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
16 changes: 16 additions & 0 deletions optimum/exporters/openvino/__main__.py
Original file line number Diff line number Diff line change
Expand Up @@ -27,12 +27,15 @@
from optimum.utils import DEFAULT_DUMMY_SHAPES
from optimum.utils.save_utils import maybe_save_preprocessors

from ...intel.utils.import_utils import is_nncf_available
from ...intel.utils.modeling_utils import patch_decoder_attention_mask
from .convert import export_models


OV_XML_FILE_NAME = "openvino_model.xml"

_MAX_UNCOMPRESSED_DECODER_SIZE = 1e9

logger = logging.getLogger(__name__)

if is_torch_available():
Expand Down Expand Up @@ -232,6 +235,19 @@ def main_export(
onnx_config_constructor = TasksManager.get_exporter_config_constructor(model=model, exporter="onnx", task=task)
onnx_config = onnx_config_constructor(model.config)
models_and_onnx_configs = {"model": (model, onnx_config)}
if model_kwargs is None:
model_kwargs = {}
load_in_8bit = model_kwargs.get("load_in_8bit", None)
AlexKoff88 marked this conversation as resolved.
Show resolved Hide resolved
if load_in_8bit is None:
if model.num_parameters() >= _MAX_UNCOMPRESSED_DECODER_SIZE:
model_kwargs["load_in_8bit"] = True
else:
model_kwargs["load_in_8bit"] = False
else:
if not is_nncf_available():
raise ImportError(
"Quantization of the weights to int8 requires nncf, please install it with `pip install nncf`"
)

if not is_stable_diffusion:
needs_pad_token_id = (
Expand Down
23 changes: 20 additions & 3 deletions optimum/exporters/openvino/convert.py
Original file line number Diff line number Diff line change
Expand Up @@ -30,6 +30,7 @@
from optimum.exporters.onnx.convert import export_tensorflow as export_tensorflow_onnx
from optimum.utils import is_diffusers_available

from ...intel.utils.import_utils import is_nncf_available
from .utils import (
OV_XML_FILE_NAME,
clear_class_registry,
Expand All @@ -52,6 +53,19 @@
from transformers.modeling_tf_utils import TFPreTrainedModel


def _save_model(model, path: str, compress_to_fp16=False, load_in_8bit=False):
if load_in_8bit:
if not is_nncf_available():
logger.warning(
"The model will be converted with no weights quantization. Quantization of the weights to int8 requires nncf."
"please install it with `pip install nncf`"
)
import nncf

model = nncf.compress_weights(model)
save_model(model, path, compress_to_fp16)


def export(
model: Union["PreTrainedModel", "TFPreTrainedModel", "ModelMixin"],
config: OnnxConfig,
Expand Down Expand Up @@ -137,7 +151,7 @@ def export_tensorflow(model: Union["PreTrainedModel", "ModelMixin"], config: Onn
onnx_path = Path(output).with_suffix(".onnx")
input_names, output_names = export_tensorflow_onnx(model, config, opset, onnx_path)
ov_model = convert_model(str(onnx_path))
save_model(ov_model, output.parent / output, compress_to_fp16=False)
_save_model(ov_model, output.parent / output, compress_to_fp16=False, load_in_8bit=False)
return input_names, output_names, True


Expand Down Expand Up @@ -187,10 +201,12 @@ def export_pytorch_via_onnx(
)
torch.onnx.export = orig_torch_onnx_export
ov_model = convert_model(str(onnx_output))
save_model(
load_in_8bit = False if model_kwargs is None else model_kwargs.get("load_in_8bit", False)
_save_model(
ov_model,
output.parent / OV_XML_FILE_NAME if output.suffix != ".xml" else output,
compress_to_fp16=False,
load_in_8bit=load_in_8bit,
)
return input_names, output_names, True

Expand Down Expand Up @@ -318,7 +334,8 @@ def ts_patched_forward(*args, **kwargs):
inp_tensor.get_node().set_partial_shape(static_shape)
inp_tensor.get_node().set_element_type(get_element_type(inp_data.cpu().numpy().dtype))
ov_model.validate_nodes_and_infer_types()
save_model(ov_model, output, compress_to_fp16=False)
load_in_8bit = False if model_kwargs is None else model_kwargs.get("load_in_8bit", False)
_save_model(ov_model, output, compress_to_fp16=False, load_in_8bit=load_in_8bit)
clear_class_registry()
del model
gc.collect()
Expand Down
1 change: 1 addition & 0 deletions optimum/intel/openvino/modeling_decoder.py
Original file line number Diff line number Diff line change
Expand Up @@ -237,6 +237,7 @@ def _from_transformers(
local_files_only=local_files_only,
force_download=force_download,
trust_remote_code=trust_remote_code,
model_kwargs=kwargs,
)

config.is_decoder = True
Expand Down
Loading