Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

f32 precision for compare-with-transformers tests #508

Merged
merged 3 commits into from
Jan 10, 2024
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
38 changes: 22 additions & 16 deletions tests/openvino/test_modeling.py
Original file line number Diff line number Diff line change
Expand Up @@ -73,6 +73,7 @@
from optimum.intel.openvino import OV_DECODER_NAME, OV_DECODER_WITH_PAST_NAME, OV_ENCODER_NAME, OV_XML_FILE_NAME
from optimum.intel.openvino.modeling_seq2seq import OVDecoder, OVEncoder
from optimum.intel.openvino.modeling_timm import TimmImageProcessor
from optimum.intel.utils.import_utils import is_openvino_version
from optimum.utils import (
DIFFUSION_MODEL_TEXT_ENCODER_SUBFOLDER,
DIFFUSION_MODEL_UNET_SUBFOLDER,
Expand All @@ -89,6 +90,8 @@

SEED = 42

F32_CONFIG = {"CACHE_DIR": "", "INFERENCE_PRECISION_HINT": "f32"}


class Timer(object):
def __enter__(self):
Expand Down Expand Up @@ -125,7 +128,10 @@ def test_load_from_hub_and_save_model(self):
loaded_model = OVModelForSequenceClassification.from_pretrained(self.OV_MODEL_ID, ov_config=ov_config)
self.assertTrue(manual_openvino_cache_dir.is_dir())
self.assertGreaterEqual(len(list(manual_openvino_cache_dir.glob("*.blob"))), 1)
self.assertEqual(loaded_model.request.get_property("PERFORMANCE_HINT").name, "THROUGHPUT")
if is_openvino_version("<", "2023.3"):
self.assertEqual(loaded_model.request.get_property("PERFORMANCE_HINT").name, "THROUGHPUT")
else:
self.assertEqual(loaded_model.request.get_property("PERFORMANCE_HINT"), "THROUGHPUT")

with tempfile.TemporaryDirectory() as tmpdirname:
loaded_model.save_pretrained(tmpdirname)
Expand Down Expand Up @@ -247,7 +253,7 @@ class OVModelForSequenceClassificationIntegrationTest(unittest.TestCase):
def test_compare_to_transformers(self, model_arch):
model_id = MODEL_NAMES[model_arch]
set_seed(SEED)
ov_model = OVModelForSequenceClassification.from_pretrained(model_id, export=True)
ov_model = OVModelForSequenceClassification.from_pretrained(model_id, export=True, ov_config=F32_CONFIG)
self.assertIsInstance(ov_model.config, PretrainedConfig)
transformers_model = AutoModelForSequenceClassification.from_pretrained(model_id)
tokenizer = AutoTokenizer.from_pretrained(model_id)
Expand Down Expand Up @@ -313,7 +319,7 @@ class OVModelForQuestionAnsweringIntegrationTest(unittest.TestCase):
def test_compare_to_transformers(self, model_arch):
model_id = MODEL_NAMES[model_arch]
set_seed(SEED)
ov_model = OVModelForQuestionAnswering.from_pretrained(model_id, export=True)
ov_model = OVModelForQuestionAnswering.from_pretrained(model_id, export=True, ov_config=F32_CONFIG)
self.assertIsInstance(ov_model.config, PretrainedConfig)
transformers_model = AutoModelForQuestionAnswering.from_pretrained(model_id)
tokenizer = AutoTokenizer.from_pretrained(model_id)
Expand Down Expand Up @@ -386,7 +392,7 @@ class OVModelForTokenClassificationIntegrationTest(unittest.TestCase):
def test_compare_to_transformers(self, model_arch):
model_id = MODEL_NAMES[model_arch]
set_seed(SEED)
ov_model = OVModelForTokenClassification.from_pretrained(model_id, export=True)
ov_model = OVModelForTokenClassification.from_pretrained(model_id, export=True, ov_config=F32_CONFIG)
self.assertIsInstance(ov_model.config, PretrainedConfig)
transformers_model = AutoModelForTokenClassification.from_pretrained(model_id)
tokenizer = AutoTokenizer.from_pretrained(model_id)
Expand Down Expand Up @@ -430,7 +436,7 @@ class OVModelForFeatureExtractionIntegrationTest(unittest.TestCase):
def test_compare_to_transformers(self, model_arch):
model_id = MODEL_NAMES[model_arch]
set_seed(SEED)
ov_model = OVModelForFeatureExtraction.from_pretrained(model_id, export=True)
ov_model = OVModelForFeatureExtraction.from_pretrained(model_id, export=True, ov_config=F32_CONFIG)
self.assertIsInstance(ov_model.config, PretrainedConfig)
transformers_model = AutoModel.from_pretrained(model_id)
tokenizer = AutoTokenizer.from_pretrained(model_id)
Expand Down Expand Up @@ -492,7 +498,7 @@ class OVModelForCausalLMIntegrationTest(unittest.TestCase):
def test_compare_to_transformers(self, model_arch):
model_id = MODEL_NAMES[model_arch]
set_seed(SEED)
ov_model = OVModelForCausalLM.from_pretrained(model_id, export=True)
ov_model = OVModelForCausalLM.from_pretrained(model_id, export=True, ov_config=F32_CONFIG)
self.assertIsInstance(ov_model.config, PretrainedConfig)
transformers_model = AutoModelForCausalLM.from_pretrained(model_id)
tokenizer = AutoTokenizer.from_pretrained(model_id)
Expand Down Expand Up @@ -637,7 +643,7 @@ class OVModelForMaskedLMIntegrationTest(unittest.TestCase):
def test_compare_to_transformers(self, model_arch):
model_id = MODEL_NAMES[model_arch]
set_seed(SEED)
ov_model = OVModelForMaskedLM.from_pretrained(model_id, export=True)
ov_model = OVModelForMaskedLM.from_pretrained(model_id, export=True, ov_config=F32_CONFIG)
self.assertIsInstance(ov_model.config, PretrainedConfig)
transformers_model = AutoModelForMaskedLM.from_pretrained(model_id)
tokenizer = AutoTokenizer.from_pretrained(model_id)
Expand Down Expand Up @@ -693,7 +699,7 @@ class OVModelForImageClassificationIntegrationTest(unittest.TestCase):
def test_compare_to_transformers(self, model_arch):
model_id = MODEL_NAMES[model_arch]
set_seed(SEED)
ov_model = OVModelForImageClassification.from_pretrained(model_id, export=True)
ov_model = OVModelForImageClassification.from_pretrained(model_id, export=True, ov_config=F32_CONFIG)
self.assertIsInstance(ov_model.config, PretrainedConfig)
transformers_model = AutoModelForImageClassification.from_pretrained(model_id)
preprocessor = AutoFeatureExtractor.from_pretrained(model_id)
Expand Down Expand Up @@ -729,7 +735,7 @@ def test_pipeline(self, model_arch):

@parameterized.expand(TIMM_MODELS)
def test_compare_to_timm(self, model_id):
ov_model = OVModelForImageClassification.from_pretrained(model_id, export=True)
ov_model = OVModelForImageClassification.from_pretrained(model_id, export=True, ov_config=F32_CONFIG)
self.assertIsInstance(ov_model.config, PretrainedConfig)
timm_model = timm.create_model(model_id, pretrained=True)
preprocessor = TimmImageProcessor.from_pretrained(model_id)
Expand Down Expand Up @@ -781,7 +787,7 @@ class OVModelForSeq2SeqLMIntegrationTest(unittest.TestCase):
def test_compare_to_transformers(self, model_arch):
model_id = MODEL_NAMES[model_arch]
set_seed(SEED)
ov_model = OVModelForSeq2SeqLM.from_pretrained(model_id, export=True)
ov_model = OVModelForSeq2SeqLM.from_pretrained(model_id, export=True, ov_config=F32_CONFIG)

self.assertIsInstance(ov_model.encoder, OVEncoder)
self.assertIsInstance(ov_model.decoder, OVDecoder)
Expand Down Expand Up @@ -920,7 +926,7 @@ def _generate_random_audio_data(self):
def test_compare_to_transformers(self, model_arch):
model_id = MODEL_NAMES[model_arch]
set_seed(SEED)
ov_model = OVModelForAudioClassification.from_pretrained(model_id, export=True)
ov_model = OVModelForAudioClassification.from_pretrained(model_id, export=True, ov_config=F32_CONFIG)
self.assertIsInstance(ov_model.config, PretrainedConfig)
transformers_model = AutoModelForAudioClassification.from_pretrained(model_id)
preprocessor = AutoFeatureExtractor.from_pretrained(model_id)
Expand Down Expand Up @@ -985,7 +991,7 @@ def test_load_vanilla_transformers_which_is_not_supported(self):
def test_compare_to_transformers(self, model_arch):
model_id = MODEL_NAMES[model_arch]
set_seed(SEED)
ov_model = OVModelForCTC.from_pretrained(model_id, export=True)
ov_model = OVModelForCTC.from_pretrained(model_id, export=True, ov_config=F32_CONFIG)
self.assertIsInstance(ov_model.config, PretrainedConfig)

set_seed(SEED)
Expand Down Expand Up @@ -1037,7 +1043,7 @@ def test_load_vanilla_transformers_which_is_not_supported(self):
def test_compare_to_transformers(self, model_arch):
model_id = MODEL_NAMES[model_arch]
set_seed(SEED)
ov_model = OVModelForAudioXVector.from_pretrained(model_id, export=True)
ov_model = OVModelForAudioXVector.from_pretrained(model_id, export=True, ov_config=F32_CONFIG)
self.assertIsInstance(ov_model.config, PretrainedConfig)

set_seed(SEED)
Expand Down Expand Up @@ -1091,7 +1097,7 @@ def test_load_vanilla_transformers_which_is_not_supported(self):
def test_compare_to_transformers(self, model_arch):
model_id = MODEL_NAMES[model_arch]
set_seed(SEED)
ov_model = OVModelForAudioFrameClassification.from_pretrained(model_id, export=True)
ov_model = OVModelForAudioFrameClassification.from_pretrained(model_id, export=True, ov_config=F32_CONFIG)
self.assertIsInstance(ov_model.config, PretrainedConfig)

set_seed(SEED)
Expand Down Expand Up @@ -1134,7 +1140,7 @@ class OVModelForPix2StructIntegrationTest(unittest.TestCase):
def test_compare_to_transformers(self, model_arch):
model_id = MODEL_NAMES[model_arch]
set_seed(SEED)
ov_model = OVModelForPix2Struct.from_pretrained(model_id, export=True)
ov_model = OVModelForPix2Struct.from_pretrained(model_id, export=True, ov_config=F32_CONFIG)

self.assertIsInstance(ov_model.encoder, OVEncoder)
self.assertIsInstance(ov_model.decoder, OVDecoder)
Expand Down Expand Up @@ -1223,7 +1229,7 @@ def _generate_random_audio_data(self):
def test_compare_to_transformers(self, model_arch):
model_id = MODEL_NAMES[model_arch]
set_seed(SEED)
ov_model = OVModelForSpeechSeq2Seq.from_pretrained(model_id, export=True)
ov_model = OVModelForSpeechSeq2Seq.from_pretrained(model_id, export=True, ov_config=F32_CONFIG)
self.assertIsInstance(ov_model.config, PretrainedConfig)
transformers_model = AutoModelForSpeechSeq2Seq.from_pretrained(model_id)
processor = get_preprocessor(model_id)
Expand Down