This repository aims to summarize pretrained encoders (backbones) derived from different detection/classification models. These encoders can be used for several downstream vision tasks such as classification, object detection, body keypoint estimation, semantic segmentation, depth estimation, etc.
to be updated
Notes
- ❌ means the encoder is incompatible with TI
- ✔️ means the encoder is compatible with TI
- ❔ means the TI compatibility has not been checked
- GMACs values were calculated with input size
(224, 224)
Reference | Pretrained Dataset | Source | Encoder name | Param Num | GMACs | License | TI compatibility |
---|---|---|---|---|---|---|---|
geffnet | ImageNet | geffnet_encoder.py | efficientnetb0 | 4,007,548 | 0.387 | Apache-2.0 | ❌ |
geffnet | ImageNet | geffnet_encoder.py | efficientnetb1 | 6,513,184 | 0.578 | Apache-2.0 | ❌ |
geffnet | ImageNet | geffnet_encoder.py | efficientnetb2 | 7,700,994 | 0.668 | Apache-2.0 | ❌ |
geffnet | ImageNet | geffnet_encoder.py | efficientnetb3 | 10,696,232 | 0.976 | Apache-2.0 | ❌ |
geffnet | ImageNet | geffnet_encoder.py | efficientnetb4 | 17,548,616 | 1.53 | Apache-2.0 | ❌ |
geffnet | ImageNet | geffnet_encoder.py | efficientnetb5 | 28,340,784 | 2.4 | Apache-2.0 | ❌ |
geffnet | ImageNet | geffnet_encoder.py | efficientnetb6 | 40,735,704 | 3.41 | Apache-2.0 | ❌ |
geffnet | ImageNet | geffnet_encoder.py | efficientnetb7 | 63,786,960 | 5.25 | Apache-2.0 | ❌ |
geffnet | ImageNet | geffnet_encoder.py | efficientnetap_b0 | 4,007,548 | 0.387 | Apache-2.0 | ❌ |
geffnet | ImageNet | geffnet_encoder.py | efficientnetap_b1 | 6,513,184 | 0.578 | Apache-2.0 | ❌ |
geffnet | ImageNet | geffnet_encoder.py | efficientnetap_b2 | 7,700,994 | 0.668 | Apache-2.0 | ❌ |
geffnet | ImageNet | geffnet_encoder.py | efficientnetap_b3 | 10,696,232 | 0.976 | Apache-2.0 | ❌ |
geffnet | ImageNet | geffnet_encoder.py | efficientnetap_b4 | 17,548,616 | 1.53 | Apache-2.0 | ❌ |
geffnet | ImageNet | geffnet_encoder.py | efficientnetap_b5 | 28,340,784 | 2.4 | Apache-2.0 | ❌ |
geffnet | ImageNet | geffnet_encoder.py | efficientnetap_b6 | 40,735,704 | 3.41 | Apache-2.0 | ❌ |
geffnet | ImageNet | geffnet_encoder.py | efficientnetap_b7 | 63,786,960 | 5.25 | Apache-2.0 | ❌ |
geffnet | ImageNet | geffnet_encoder.py | efficientnetlite0 | 3,371,008 | 0.386 | Apache-2.0 | ✔️ |
geffnet | ImageNet | geffnet_encoder.py | efficientnetlite1 | 4,135,680 | 0.509 | Apache-2.0 | ✔️ |
geffnet | ImageNet | geffnet_encoder.py | efficientnetlite2 | 4,811,072 | 0.584 | Apache-2.0 | ✔️ |
geffnet | ImageNet | geffnet_encoder.py | efficientnetlite3 | 6,916,096 | 0.865 | Apache-2.0 | ✔️ |
geffnet | ImageNet | geffnet_encoder.py | efficientnetlite4 | 11,725,568 | 1.37 | Apache-2.0 | ✔️ |
torchvision | ImageNet | torchvision_encoder.py | torchefficientnetb0 | 4,007,548 | 0.409 | BSD 3-Clause | ❌ |
torchvision | ImageNet | torchvision_encoder.py | torchefficientnetb1 | 6,513,184 | 0.603 | BSD 3-Clause | ❌ |
torchvision | ImageNet | torchvision_encoder.py | torchefficientnetb2 | 7,700,994 | 0.693 | BSD 3-Clause | ❌ |
torchvision | ImageNet | torchvision_encoder.py | torchefficientnetb3 | 10,696,232 | 1.01 | BSD 3-Clause | ❌ |
torchvision | ImageNet | torchvision_encoder.py | torchefficientnetb4 | 17,548,616 | 1.56 | BSD 3-Clause | ❌ |
torchvision | ImageNet | torchvision_encoder.py | torchefficientnetb5 | 28,340,784 | 2.44 | BSD 3-Clause | ❌ |
torchvision | ImageNet | torchvision_encoder.py | torchefficientnetb6 | 40,735,704 | 3.47 | BSD 3-Clause | ❌ |
torchvision | ImageNet | torchvision_encoder.py | torchefficientnetb7 | 63,786,960 | 5.32 | BSD 3-Clause | ❌ |
torchvision | ImageNet | torchvision_encoder.py | mobilenetv2 | 2,223,872 | 0.319 | BSD 3-Clause | ✔️ |
torchvision | ImageNet | torchvision_encoder.py | mobilenetv3small | 927,008 | 0.059 | BSD 3-Clause | ❔ |
torchvision | ImageNet | torchvision_encoder.py | mobilenetv3large | 2,971,952 | 0.229 | BSD 3-Clause | ❔ |
torchvision | ImageNet | torchvision_encoder.py | resnet18 | 11,176,512 | 1.82 | BSD 3-Clause | ✔️ |
torchvision | ImageNet | torchvision_encoder.py | resnet34 | 21,284,672 | 3.68 | BSD 3-Clause | ✔️ |
torchvision | ImageNet | torchvision_encoder.py | resnet50 | 23,508,032 | 4.13 | BSD 3-Clause | ❔ |
torchvision | ImageNet | torchvision_encoder.py | resnet101 | 42,500,160 | 7.86 | BSD 3-Clause | ❔ |
torchvision | ImageNet | torchvision_encoder.py | resnet152 | 58,143,808 | 11.6 | BSD 3-Clause | ❔ |
torchvision | ImageNet | torchvision_encoder.py | resnext50_32x4d | 22,979,904 | 4.28 | BSD 3-Clause | ❔ |
torchvision | ImageNet | torchvision_encoder.py | resnext101_32x8d | 86,742,336 | 16.54 | BSD 3-Clause | ❔ |
torchvision | ImageNet | torchvision_encoder.py | resnext101_64x4d | 81,406,272 | 15.58 | BSD 3-Clause | ❔ |
torchvision | ImageNet | torchvision_encoder.py | regnet_y_400mf | 3,903,144 | 0.418 | BSD 3-Clause | ❔ |
torchvision | ImageNet | torchvision_encoder.py | regnet_y_800mf | 5,647,512 | 0.856 | BSD 3-Clause | ❔ |
torchvision | ImageNet | torchvision_encoder.py | regnet_y_1_6gf | 10,313,430 | 1.65 | BSD 3-Clause | ❔ |
torchvision | ImageNet | torchvision_encoder.py | regnet_y_3_2gf | 17,923,338 | 3.22 | BSD 3-Clause | ❔ |
torchvision | ImageNet | torchvision_encoder.py | regnet_y_8gf | 37,364,472 | 8.56 | BSD 3-Clause | ❔ |
torchvision | ImageNet | torchvision_encoder.py | regnet_y_16gf | 80,565,140 | 16.01 | BSD 3-Clause | ❔ |
torchvision | ImageNet | torchvision_encoder.py | regnet_y_32gf | 141,333,770 | 32.41 | BSD 3-Clause | ❔ |
torchvision | ImageNet | torchvision_encoder.py | regnet_x_400mf | 5,094,976 | 0.426 | BSD 3-Clause | ✔️ |
torchvision | ImageNet | torchvision_encoder.py | regnet_x_800mf | 6,586,656 | 0.819 | BSD 3-Clause | ✔️ |
torchvision | ImageNet | torchvision_encoder.py | regnet_x_1_6gf | 8,277,136 | 1.63 | BSD 3-Clause | ✔️ |
torchvision | ImageNet | torchvision_encoder.py | regnet_x_3_2gf | 14,287,552 | 3.22 | BSD 3-Clause | ❔ |
torchvision | ImageNet | torchvision_encoder.py | regnet_x_8gf | 37,651,648 | 8.05 | BSD 3-Clause | ❔ |
torchvision | ImageNet | torchvision_encoder.py | regnet_x_16gf | 52,229,536 | 16.04 | BSD 3-Clause | ❔ |
torchvision | ImageNet | torchvision_encoder.py | regnet_x_32gf | 105,290,560 | 31.87 | BSD 3-Clause | ❔ |
apple ml-mobileone | ImageNet | mobileone_encoder.py | mobileone_s0 | 4,268,272 | 1.25 | Apple | ❌ |
apple ml-mobileone | ImageNet | mobileone_encoder.py | mobileone_s1 | 3,544,192 | 1.13 | Apple | ❌ |
apple ml-mobileone | ImageNet | mobileone_encoder.py | mobileone_s2 | 5,835,648 | 1.67 | Apple | ❌ |
apple ml-mobileone | ImageNet | mobileone_encoder.py | mobileone_s3 | 8,121,600 | 2.34 | Apple | ❌ |
apple ml-mobileone | ImageNet | mobileone_encoder.py | mobileone_s4 | 12,902,248 | 3.56 | Apple | ❌ |
timm encoder* | ImageNet | timm_encoder.py | - | - | - | Apache-2.0 | ❔ |
facebook ConvNeXt | ImageNet | convnext_encoder.py | convnext_tiny | 27,818,592 | 4.49 | MIT | ❌ |
facebook ConvNeXt | ImageNet | convnext_encoder.py | convnext_small | 49,453,152 | 8.73 | MIT | ❌ |
facebook ConvNeXt | ImageNet | convnext_encoder.py | convnext_base | 87,564,416 | 15.42 | MIT | ❌ |
facebook ConvNeXt | ImageNet | convnext_encoder.py | convnext_large | 196,227,264 | 34.46 | MIT | ❌ |
facebook ConvNeXt | ImageNet | convnext_encoder.py | convnext_xlarge | 196,227,264 | 34.46 | MIT | ❌ |
facebook ConvNeXt-V2 | ImageNet | convnextv2_encoder.py | convnextv2_atto | 3,386,760 | 0.556 | CC BY-NC 4.0 | ❌ |
facebook ConvNeXt-V2 | ImageNet | convnextv2_encoder.py | convnextv2_femto | 4,847,472 | 0.790 | CC BY-NC 4.0 | ❌ |
facebook ConvNeXt-V2 | ImageNet | convnextv2_encoder.py | convnextv2_pico | 8,552,256 | 1.38 | CC BY-NC 4.0 | ❌ |
facebook ConvNeXt-V2 | ImageNet | convnextv2_encoder.py | convnextv2_nano | 13,301,520 | 2.13 | CC BY-NC 4.0 | ❌ |
facebook ConvNeXt-V2 | ImageNet | convnextv2_encoder.py | convnextv2_tiny | 49,547,904 | 8.73 | CC BY-NC 4.0 | ❌ |
facebook ConvNeXt-V2 | ImageNet | convnextv2_encoder.py | convnextv2_base | 87,690,752 | 15.42 | CC BY-NC 4.0 | ❌ |
facebook ConvNeXt-V2 | ImageNet | convnextv2_encoder.py | convnextv2_large | 196,416,768 | 34.46 | CC BY-NC 4.0 | ❌ |
facebook ConvNeXt-V2 | ImageNet | convnextv2_encoder.py | convnextv2_huge | 657,467,008 | 115.1 | CC BY-NC 4.0 | ❌ |
Reference | Pretrained Dataset | Source | Encoder | Param Num | GMACs | License | TI compatibility |
---|---|---|---|---|---|---|---|
edgeai-yolox | COCO | yolox_encoder.py | tiyoloxn | 1,767,868 | 0.269 | Apache-2.0 | ✔️ |
edgeai-yolox | COCO | yolox_encoder.py | tiyoloxt | 3,968,748 | 0.578 | Apache-2.0 | ✔️ |
edgeai-yolox | COCO | yolox_encoder.py | tiyoloxs | 7,047,708 | 1.01 | Apache-2.0 | ✔️ |
edgeai-yolox | COCO | yolox_encoder.py | tiyoloxm | 21,032,508 | 3.09 | Apache-2.0 | ✔️ |
Megviii YOLOX | COCO | yolox_encoder.py | yoloxn | 1,767,520 | 0.264 | Apache-2.0 | ❌ |
Megviii YOLOX | COCO | yolox_encoder.py | yoloxt | 3,968,400 | 0.574 | Apache-2.0 | ❌ |
Megviii YOLOX | COCO | yolox_encoder.py | yoloxs | 7,047,360 | 1.0 | Apache-2.0 | ❌ |
Megviii YOLOX | COCO | yolox_encoder.py | yoloxm | 21,032,160 | 3.09 | Apache-2.0 | ❌ |
Megviii YOLOX | COCO | yolox_encoder.py | yoloxl | 46,599,040 | 7.0 | Apache-2.0 | ❌ |
Megviii YOLOX | COCO | yolox_encoder.py | yoloxx | 87,204,000 | 13.32 | Apache-2.0 | ❌ |
DAMO-YOLO | COCO | damoyolo_encoder.py | damoyolo_ns | 1,373,992 | 0.224 | Apache-2.0 | ❔ |
DAMO-YOLO | COCO | damoyolo_encoder.py | damoyolo_nm | 2,656,704 | 0.533 | Apache-2.0 | ❔ |
DAMO-YOLO | COCO | damoyolo_encoder.py | damoyolo_nl | 5,625,520 | 0.872 | Apache-2.0 | ❔ |
DAMO-YOLO | COCO | damoyolo_encoder.py | damoyolo_t | 8,278,544 | 1.06 | Apache-2.0 | ❔ |
DAMO-YOLO | COCO | damoyolo_encoder.py | damoyolo_s | 15,741,728 | 2.21 | Apache-2.0 | ❔ |
DAMO-YOLO | COCO | damoyolo_encoder.py | damoyolo_m | 28,047,808 | 3.71 | Apache-2.0 | ❔ |
DAMO-YOLO | COCO | damoyolo_encoder.py | damoyolo_l | 42,667,840 | 6.0 | Apache-2.0 | ❔ |
PPYOLOE backbone + neck | COCO | ppyoloe_encoder.py | ppyoloe_s | 6,410,864 | 0.89 | Apache-2.0 | ❌ |
PPYOLOE backbone + neck | COCO | ppyoloe_encoder.py | ppyoloe_m | 21,043,920 | 2.85 | Apache-2.0 | ❌ |
PPYOLOE backbone + neck | COCO | ppyoloe_encoder.py | ppyoloe_l | 49,183,264 | 6.58 | Apache-2.0 | ❌ |
PPYOLOE backbone + neck | COCO | ppyoloe_encoder.py | ppyoloe_x | 95,244,800 | 12.64 | Apache-2.0 | ❌ |
PPYOLOE backbone + neck (removed Squeeze-Excitation block) | COCO | ppyoloe_encoder.py | ppyoloe_s_noattn | 6,214,304 | 0.87 | Apache-2.0 | ✔️ |
PPYOLOE backbone + neck (removed Squeeze-Excitation block) | COCO | ppyoloe_encoder.py | ppyoloe_m_noattn | 20,602,200 | 2.79 | Apache-2.0 | ✔️ |
PPYOLOE backbone + neck (removed Squeeze-Excitation block) | COCO | ppyoloe_encoder.py | ppyoloe_l_noattn | 48,398,464 | 6.46 | Apache-2.0 | ❔ |
PPYOLOE backbone + neck (removed Squeeze-Excitation block) | COCO | ppyoloe_encoder.py | ppyoloe_x_noattn | 94,019,000 | 12.45 | Apache-2.0 | ❔ |
PPYOLOE backbone | COCO | ppyoloe_encoder.py | ppyoloe_s_truncate | 2,992,976 | 0.57 | Apache-2.0 | ❌ |
PPYOLOE backbone | COCO | ppyoloe_encoder.py | ppyoloe_m_truncate | 9,317,424 | 1.75 | Apache-2.0 | ❌ |
PPYOLOE backbone | COCO | ppyoloe_encoder.py | ppyoloe_l_truncate | 21,158,752 | 3.92 | Apache-2.0 | ❌ |
PPYOLOE backbone | COCO | ppyoloe_encoder.py | ppyoloe_x_truncate | 40,240,640 | 7.41 | Apache-2.0 | ❌ |
PPYOLOE backbone (removed Squeeze-Excitation block) | COCO | ppyoloe_encoder.py | ppyoloe_s_noattn_truncate | 2,796,416 | 0.54 | Apache-2.0 | ✔️ |
PPYOLOE backbone (removed Squeeze-Excitation block) | COCO | ppyoloe_encoder.py | ppyoloe_m_noattn_truncate | 8,875,704 | 1.68 | Apache-2.0 | ✔️ |
PPYOLOE backbone (removed Squeeze-Excitation block) | COCO | ppyoloe_encoder.py | ppyoloe_l_noattn_truncate | 20,373,952 | 3.81 | Apache-2.0 | ❔ |
PPYOLOE backbone (removed Squeeze-Excitation block) | COCO | ppyoloe_encoder.py | ppyoloe_x_noattn_truncate | 39,014,840 | 7.23 | Apache-2.0 | ❔ |
Jahongir YOLOv5-pt | COCO | yolov5_encoder.py | yolov5n | 1,757,152 | 0.256 | AGPL-3.0 | ❌ |
Jahongir YOLOv5-pt | COCO | yolov5_encoder.py | yolov5s | 7,006,144 | 0.971 | AGPL-3.0 | ❌ |
Jahongir YOLOv5-pt | COCO | yolov5_encoder.py | yolov5m | 20,847,072 | 2.94 | AGPL-3.0 | ❌ |
Jahongir YOLOv5-pt | COCO | yolov5_encoder.py | yolov5l | 46,105,984 | 6.61 | AGPL-3.0 | ❌ |
Jahongir YOLOv5-pt | COCO | yolov5_encoder.py | yolov5x | 86,177,440 | 12.51 | AGPL-3.0 | ❌ |
Custom Jahongir YOLOv5-pt for TI | COCO | yolov5_encoder.py | tiyolov5n | 1,757,152 | 0.256 | AGPL-3.0 | ✔️ |
Custom Jahongir YOLOv5-pt for TI | COCO | yolov5_encoder.py | tiyolov5s | 7,006,144 | 0.971 | AGPL-3.0 | ✔️ |
Custom Jahongir YOLOv5-pt for TI | COCO | yolov5_encoder.py | tiyolov5m | 20,847,072 | 2.94 | AGPL-3.0 | ❌ |
Custom Jahongir YOLOv5-pt for TI | COCO | yolov5_encoder.py | tiyolov5l | 46,105,984 | 6.61 | AGPL-3.0 | ❌ |
Custom Jahongir YOLOv5-pt for TI | COCO | yolov5_encoder.py | tiyolov5x | 86,177,440 | 12.51 | AGPL-3.0 | ❌ |
ultralytics YOLOv5 | COCO | ultralytics_encoder.py | ultralytics_yolov5n | 1,757,152 | 0.256 | AGPL-3.0 | ❌ |
ultralytics YOLOv5 | COCO | ultralytics_encoder.py | ultralytics_yolov5s | 7,006,144 | 0.971 | AGPL-3.0 | ❌ |
ultralytics YOLOv5 | COCO | ultralytics_encoder.py | ultralytics_yolov5m | 20,847,072 | 2.94 | AGPL-3.0 | ❌ |
ultralytics YOLOv5 | COCO | ultralytics_encoder.py | ultralytics_yolov5l | 46,105,984 | 6.61 | AGPL-3.0 | ❌ |
ultralytics YOLOv5 | COCO | ultralytics_encoder.py | ultralytics_yolov5x | 86,177,440 | 12.51 | AGPL-3.0 | ❌ |
ultralytics YOLOv5 (custom) | COCO | ultralytics_encoder.py | ultralytics_tiyolov5n | 1,757,152 | 0.256 | AGPL-3.0 | ✔️ |
ultralytics YOLOv5 (custom) | COCO | ultralytics_encoder.py | ultralytics_tiyolov5s | 7,006,144 | 0.971 | AGPL-3.0 | ✔️ |
ultralytics YOLOv5 (custom) | COCO | ultralytics_encoder.py | ultralytics_tiyolov5m | 20,847,072 | 2.94 | AGPL-3.0 | ✔️ |
ultralytics YOLOv5 (custom) | COCO | ultralytics_encoder.py | ultralytics_tiyolov5l | 46,105,984 | 6.61 | AGPL-3.0 | ✔️ |
ultralytics YOLOv5 (custom) | COCO | ultralytics_encoder.py | ultralytics_tiyolov5x | 86,177,440 | 12.51 | AGPL-3.0 | ✔️ |
meituan YOLOv6 P5 | COCO | yolov6_encoder.py | yolov6n | 4,629,248 | 0.729 | GPL-3.0 | ❔ |
meituan YOLOv6 P5 | COCO | yolov6_encoder.py | yolov6s | 18,472,448 | 2.87 | GPL-3.0 | ❔ |
meituan YOLOv6 P5 | COCO | yolov6_encoder.py | yolov6m | 33,959,832 | 5.4 | GPL-3.0 | ❔ |
meituan YOLOv6 P5 | COCO | yolov6_encoder.py | yolov6l | 52,963,053 | 8.52 | GPL-3.0 | ❔ |
meituan YOLOv6 P6 | COCO | yolov6_encoder.py | yolov6n6 | 7,193,472 | 1.51 | GPL-3.0 | ❔ |
meituan YOLOv6 P6 | COCO | yolov6_encoder.py | yolov6s6 | 28,713,728 | 5.94 | GPL-3.0 | ❔ |
meituan YOLOv6 lite | COCO | yolov6lite_encoder.py | yolov6lites | 354,662 | 0.096 | GPL-3.0 | ❔ |
meituan YOLOv6 lite | COCO | yolov6lite_encoder.py | yolov6litem | 588,101 | 0.122 | GPL-3.0 | ❔ |
meituan YOLOv6 lite | COCO | yolov6lite_encoder.py | yolov6litel | 895,509 | 0.173 | GPL-3.0 | ❔ |
ultralytics YOLOv6 | COCO | ultralytics_encoder.py | ultralytics_yolov6n | 3,892,720 | 0.686 | AGPL-3.0 | ❌ |
ultralytics YOLOv6 | COCO | ultralytics_encoder.py | ultralytics_yolov6s | 15,554,528 | 2.62 | AGPL-3.0 | ❌ |
ultralytics YOLOv6 | COCO | ultralytics_encoder.py | ultralytics_yolov6m | 50,655,696 | 9.96 | AGPL-3.0 | ❌ |
ultralytics YOLOv6 | COCO | ultralytics_encoder.py | ultralytics_yolov6l | 108,779,456 | 24.49 | AGPL-3.0 | ❌ |
ultralytics YOLOv6 | COCO | ultralytics_encoder.py | ultralytics_yolov6x | 169,948,080 | 37.94 | AGPL-3.0 | ❌ |
ultralytics YOLOv6 (custom) | COCO | ultralytics_encoder.py | ultralytics_tiyolov6n | 3,892,720 | 0.686 | AGPL-3.0 | ✔️ |
ultralytics YOLOv6 (custom) | COCO | ultralytics_encoder.py | ultralytics_tiyolov6s | 15,554,528 | 2.62 | AGPL-3.0 | ✔️ |
ultralytics YOLOv6 (custom) | COCO | ultralytics_encoder.py | ultralytics_tiyolov6m | 50,655,696 | 9.96 | AGPL-3.0 | ✔️ |
ultralytics YOLOv6 (custom) | COCO | ultralytics_encoder.py | ultralytics_tiyolov6l | 108,779,456 | 24.49 | AGPL-3.0 | ✔️ |
ultralytics YOLOv6 (custom) | COCO | ultralytics_encoder.py | ultralytics_tiyolov6x | 169,948,080 | 37.94 | AGPL-3.0 | ✔️ |
WongKinYiu YOLOv7 | COCO | yolov7_encoder.py | yolov7-tiny | 5,997,856 | 0.803 | GPL-3.0 | ❔ |
WongKinYiu YOLOv7 | COCO | yolov7_encoder.py | yolov7 | 37,162,400 | 6.42 | GPL-3.0 | ❔ |
WongKinYiu YOLOv7 | COCO | yolov7_encoder.py | yolov7x | 70,772,424 | 11.55 | GPL-3.0 | ❔ |
Jahongir YOLOv8-pt | COCO | yolov8_encoder.py | yolov8n | 2,259,536 | 0.318 | AGPL-3.0 | ❌ |
Jahongir YOLOv8-pt | COCO | yolov8_encoder.py | yolov8s | 9,019,552 | 1.25 | AGPL-3.0 | ❌ |
Jahongir YOLOv8-pt | COCO | yolov8_encoder.py | yolov8m | 22,080,624 | 3.87 | AGPL-3.0 | ❌ |
Jahongir YOLOv8-pt | COCO | yolov8_encoder.py | yolov8l | 38,047,040 | 8.53 | AGPL-3.0 | ❌ |
Jahongir YOLOv8-pt | COCO | yolov8_encoder.py | yolov8x | 59,434,640 | 13.32 | AGPL-3.0 | ❌ |
Custom Jahongir YOLOv8-pt for TI | COCO | yolov8_encoder.py | tiyolov8n | 2,259,536 | 0.318 | AGPL-3.0 | ✔️ |
Custom Jahongir YOLOv8-pt for TI | COCO | yolov8_encoder.py | tiyolov8s | 9,019,552 | 1.25 | AGPL-3.0 | ✔️ |
Custom Jahongir YOLOv8-pt for TI | COCO | yolov8_encoder.py | tiyolov8m | 22,080,624 | 3.87 | AGPL-3.0 | ❌ |
Custom Jahongir YOLOv8-pt for TI | COCO | yolov8_encoder.py | tiyolov8l | 38,047,040 | 8.53 | AGPL-3.0 | ❌ |
Custom Jahongir YOLOv8-pt for TI | COCO | yolov8_encoder.py | tiyolov8x | 59,434,640 | 13.32 | AGPL-3.0 | ❌ |
ultralytics YOLOv8 | COCO | ultralytics_encoder.py | ultralytics_yolov8n | 2,259,536 | 0.318 | AGPL-3.0 | ❌ |
ultralytics YOLOv8 | COCO | ultralytics_encoder.py | ultralytics_yolov8s | 9,019,552 | 1.25 | AGPL-3.0 | ❌ |
ultralytics YOLOv8 | COCO | ultralytics_encoder.py | ultralytics_yolov8m | 22,080,624 | 3.87 | AGPL-3.0 | ❌ |
ultralytics YOLOv8 | COCO | ultralytics_encoder.py | ultralytics_yolov8l | 38,047,040 | 8.53 | AGPL-3.0 | ❌ |
ultralytics YOLOv8 | COCO | ultralytics_encoder.py | ultralytics_yolov8x | 59,434,640 | 13.32 | AGPL-3.0 | ❌ |
ultralytics YOLOv8 (custom) | COCO | ultralytics_encoder.py | ultralytics_tiyolov8n | 2,259,536 | 0.318 | AGPL-3.0 | ❌ |
ultralytics YOLOv8 (custom) | COCO | ultralytics_encoder.py | ultralytics_tiyolov8s | 9,019,552 | 1.25 | AGPL-3.0 | ❌ |
ultralytics YOLOv8 (custom) | COCO | ultralytics_encoder.py | ultralytics_tiyolov8m | 22,080,624 | 3.87 | AGPL-3.0 | ❌ |
ultralytics YOLOv8 (custom) | COCO | ultralytics_encoder.py | ultralytics_tiyolov8l | 38,047,040 | 8.53 | AGPL-3.0 | ❌ |
ultralytics YOLOv8 (custom) | COCO | ultralytics_encoder.py | ultralytics_tiyolov8x | 59,434,640 | 13.32 | AGPL-3.0 | ❌ |
WongKinYiu YOLOv9 | COCO | yolov9_encoder.py | yolov9-t | 1,709,232 | 0.397 | GPL-3.0 | ❔ |
WongKinYiu YOLOv9 | COCO | yolov9_encoder.py | yolov9-s | 6,800,736 | 1.57 | GPL-3.0 | ❔ |
WongKinYiu YOLOv9 | COCO | yolov9_encoder.py | yolov9-c | 29,456,768 | 7.55 | GPL-3.0 | ❔ |
WongKinYiu YOLOv9 | COCO | yolov9_encoder.py | yolov9-e | 58,425,024 | 11.86 | GPL-3.0 | ❔ |
WongKinYiu YOLOv9 | COCO | yolov9_encoder.py | gelan-c | 19,946,432 | 4.75 | GPL-3.0 | ❔ |
WongKinYiu YOLOv9 | COCO | yolov9_encoder.py | gelan-e | 52,562,112 | 10.2 | GPL-3.0 | ❔ |
ultralytics YOLOv9 | COCO | ultralytics_encoder.py | ultralytics_yolov9c | 19,946,432 | 4.75 | AGPL-3.0 | ❌ |
ultralytics YOLOv9 | COCO | ultralytics_encoder.py | ultralytics_yolov9e | 52,562,112 | 10.2 | AGPL-3.0 | ❌ |
ultralytics YOLOv9 (custom) | COCO | ultralytics_encoder.py | ultralytics_tiyolov9c | 19,946,432 | 4.75 | AGPL-3.0 | ❌ |
ultralytics YOLOv9 (custom) | COCO | ultralytics_encoder.py | ultralytics_tiyolov9e | 52,562,112 | 10.2 | AGPL-3.0 | ❌ |
THU-MIG YOLOv10 | COCO | yolov10_encoder.py | yolov10n | 1,845,712 | 0.301 | AGPL-3.0 | ❔ |
THU-MIG YOLOv10 | COCO | yolov10_encoder.py | yolov10s | 6,427,552 | 1.14 | AGPL-3.0 | ❔ |
THU-MIG YOLOv10 | COCO | yolov10_encoder.py | yolov10m | 14,203,152 | 3.34 | AGPL-3.0 | ❔ |
THU-MIG YOLOv10 | COCO | yolov10_encoder.py | yolov10l | 22,943,296 | 7.0 | AGPL-3.0 | ❔ |
THU-MIG YOLOv10 | COCO | yolov10_encoder.py | yolov10x | 27,269,840 | 9.24 | AGPL-3.0 | ❔ |
THU-MIG YOLOv10 (custom) | COCO | yolov10_encoder.py | tiyolov10n | 1,845,712 | 0.301 | AGPL-3.0 | ❔ |
THU-MIG YOLOv10 (custom) | COCO | yolov10_encoder.py | tiyolov10s | 6,427,552 | 1.14 | AGPL-3.0 | ❔ |
THU-MIG YOLOv10 (custom) | COCO | yolov10_encoder.py | tiyolov10m | 14,203,152 | 3.34 | AGPL-3.0 | ❔ |
THU-MIG YOLOv10 (custom) | COCO | yolov10_encoder.py | tiyolov10l | 22,943,296 | 7.0 | AGPL-3.0 | ❔ |
THU-MIG YOLOv10 (custom) | COCO | yolov10_encoder.py | tiyolov10x | 27,269,840 | 9.24 | AGPL-3.0 | ❔ |
Jahongir YOLOv11-pt | COCO | yolov11_encoder.py | yolov11n | 2,159,168 | 0.287 | AGPL-3.0 | ❔ |
Jahongir YOLOv11-pt | COCO | yolov11_encoder.py | yolov11s | 8,608,384 | 1.13 | AGPL-3.0 | ❔ |
Jahongir YOLOv11-pt | COCO | yolov11_encoder.py | yolov11m | 18,641,984 | 3.78 | AGPL-3.0 | ❔ |
Jahongir YOLOv11-pt | COCO | yolov11_encoder.py | yolov11l | 23,899,456 | 4.94 | AGPL-3.0 | ❔ |
Jahongir YOLOv11-pt | COCO | yolov11_encoder.py | yolov11x | 53,728,224 | 11.09 | AGPL-3.0 | ❔ |
sunsmarterjie YOLOv12 | COCO | yolov11_encoder.py | yolov12n | 2,137,376 | 0.289 | AGPL-3.0 | ❔ |
sunsmarterjie YOLOv12 | COCO | yolov12_encoder.py | yolov12s | 8,433,728 | 1.12 | AGPL-3.0 | ❔ |
sunsmarterjie YOLOv12 | COCO | yolov12_encoder.py | yolov12m | 18,726,464 | 3.75 | AGPL-3.0 | ❔ |
sunsmarterjie YOLOv12 | COCO | yolov12_encoder.py | yolov12l | 24,978,080 | 5.07 | AGPL-3.0 | ❔ |
sunsmarterjie YOLOv12 | COCO | yolov12_encoder.py | yolov12x | 55,972,832 | 11.35 | AGPL-3.0 | ❔ |
RT-DETR PResNet backbone | COCO | rtdetr_encoder.py | rtdetr_r18vd_truncate | 11,190,112 | 2.07 | Apache-2.0 | ❔ |
RT-DETR PResNet backbone | COCO | rtdetr_encoder.py | rtdetr_r34vd_truncate | 21,290,848 | 3.93 | Apache-2.0 | ❔ |
RT-DETR PResNet backbone | COCO | rtdetr_encoder.py | rtdetr_r50vd_truncate | 23,474,016 | 4.35 | Apache-2.0 | ❔ |
RT-DETR PResNet backbone | COCO | rtdetr_encoder.py | rtdetr_r101vd_truncate | 42,413,920 | 8.07 | Apache-2.0 | ❔ |
RT-DETR PResNet backbone | COCO + Object365 | rtdetr_encoder.py | cocoobject365_rtdetr_r18vd_truncate | 11,190,112 | 2.07 | Apache-2.0 | ❔ |
RT-DETR PResNet backbone | COCO + Object365 | rtdetr_encoder.py | cocoobject365_rtdetr_r34vd_truncate | 21,290,848 | 3.93 | Apache-2.0 | ❔ |
RT-DETR PResNet backbone | COCO + Object365 | rtdetr_encoder.py | cocoobject365_rtdetr_r50vd_truncate | 23,474,016 | 4.35 | Apache-2.0 | ❔ |
RT-DETR PResNet backbone | COCO + Object365 | rtdetr_encoder.py | cocoobject365_rtdetr_r101vd_truncate | 42,413,920 | 8.07 | Apache-2.0 | ❔ |
RT-DETR PResNet backbone + HybridEncoder | COCO | rtdetr_encoder.py | rtdetr_r18vd | 16,155,232 | - | Apache-2.0 | ❔ |
RT-DETR PResNet backbone + HybridEncoder | COCO | rtdetr_encoder.py | rtdetr_r34vd | 26,255,968 | - | Apache-2.0 | ❔ |
RT-DETR PResNet backbone + HybridEncoder | COCO | rtdetr_encoder.py | rtdetr_r50vd | 35,424,864 | - | Apache-2.0 | ❔ |
RT-DETR PResNet backbone + HybridEncoder | COCO | rtdetr_encoder.py | rtdetr_r101vd | 68,204,000 | - | Apache-2.0 | ❔ |
RT-DETR PResNet backbone + HybridEncoder | COCO + Object365 | rtdetr_encoder.py | cocoobject365_rtdetr_r18vd | 16,155,232 | - | Apache-2.0 | ❔ |
RT-DETR PResNet backbone + HybridEncoder | COCO + Object365 | rtdetr_encoder.py | cocoobject365_rtdetr_r34vd | 26,255,968 | - | Apache-2.0 | ❔ |
RT-DETR PResNet backbone + HybridEncoder | COCO + Object365 | rtdetr_encoder.py | cocoobject365_rtdetr_r50vd | 35,424,864 | - | Apache-2.0 | ❔ |
RT-DETR PResNet backbone + HybridEncoder | COCO + Object365 | rtdetr_encoder.py | cocoobject365_rtdetr_r101vd | 68,204,000 | - | Apache-2.0 | ❔ |
D-FINE HGNetv2 backbone | COCO | hgnetv2_encoder.py | coco_hgnetv2_b0 | 1,850,336 | 0.326 | Apache-2.0 | ❔ |
D-FINE HGNetv2 backbone | COCO | hgnetv2_encoder.py | coco_hgnetv2_b2 | 6,026,544 | 1.15 | Apache-2.0 | ❔ |
D-FINE HGNetv2 backbone | COCO | hgnetv2_encoder.py | coco_hgnetv2_b4 | 13,507,680 | 2.74 | Apache-2.0 | ❔ |
D-FINE HGNetv2 backbone | COCO | hgnetv2_encoder.py | coco_hgnetv2_b5 | 33,231,840 | 6.55 | Apache-2.0 | ❔ |
D-FINE HGNetv2 backbone | Object365 | hgnetv2_encoder.py | object365_hgnetv2_b0 | 1,850,336 | 0.326 | Apache-2.0 | ❔ |
D-FINE HGNetv2 backbone | Object365 | hgnetv2_encoder.py | object365_hgnetv2_b2 | 6,026,544 | 1.15 | Apache-2.0 | ❔ |
D-FINE HGNetv2 backbone | Object365 | hgnetv2_encoder.py | object365_hgnetv2_b4 | 13,507,680 | 2.74 | Apache-2.0 | ❔ |
D-FINE HGNetv2 backbone | Object365 | hgnetv2_encoder.py | object365_hgnetv2_b5 | 33,231,840 | 6.55 | Apache-2.0 | ❔ |
D-FINE HGNetv2 backbone | COCO + Object365 | hgnetv2_encoder.py | cocoobject365_hgnetv2_b0 | 1,850,336 | 0.326 | Apache-2.0 | ❔ |
D-FINE HGNetv2 backbone | COCO + Object365 | hgnetv2_encoder.py | cocoobject365_hgnetv2_b2 | 6,026,544 | 1.15 | Apache-2.0 | ❔ |
D-FINE HGNetv2 backbone | COCO + Object365 | hgnetv2_encoder.py | cocoobject365_hgnetv2_b4 | 13,507,680 | 2.74 | Apache-2.0 | ❔ |
D-FINE HGNetv2 backbone | COCO + Object365 | hgnetv2_encoder.py | cocoobject365_hgnetv2_b5 | 33,231,840 | 6.55 | Apache-2.0 | ❔ |
D-FINE HGNetv2 backbone + HybridEncoder encoder | COCO | hgnetv2_encoder.py | coco_dfine_s | 10,734,816 | - | Apache-2.0 | ❔ |
D-FINE HGNetv2 backbone + HybridEncoder encoder | COCO | hgnetv2_encoder.py | coco_dfine_m | 13,825,584 | - | Apache-2.0 | ❔ |
D-FINE HGNetv2 backbone + HybridEncoder encoder | COCO | hgnetv2_encoder.py | coco_dfine_l | 22,850,912 | - | Apache-2.0 | ❔ |
D-FINE HGNetv2 backbone + HybridEncoder encoder | COCO | hgnetv2_encoder.py | coco_dfine_x | 53,931,872 | - | Apache-2.0 | ❔ |
D-FINE HGNetv2 backbone + HybridEncoder encoder | Object365 | hgnetv2_encoder.py | object365_dfine_s | 10,734,816 | - | Apache-2.0 | ❔ |
D-FINE HGNetv2 backbone + HybridEncoder encoder | Object365 | hgnetv2_encoder.py | object365_dfine_m | 13,825,584 | - | Apache-2.0 | ❔ |
D-FINE HGNetv2 backbone + HybridEncoder encoder | Object365 | hgnetv2_encoder.py | object365_dfine_l | 22,850,912 | - | Apache-2.0 | ❔ |
D-FINE HGNetv2 backbone + HybridEncoder encoder | Object365 | hgnetv2_encoder.py | object365_dfine_x | 53,931,872 | - | Apache-2.0 | ❔ |
D-FINE HGNetv2 backbone + HybridEncoder encoder | COCO + Object365 | hgnetv2_encoder.py | cocoobject365_dfine_s | 10,734,816 | - | Apache-2.0 | ❔ |
D-FINE HGNetv2 backbone + HybridEncoder encoder | COCO + Object365 | hgnetv2_encoder.py | cocoobject365_dfine_m | 13,825,584 | - | Apache-2.0 | ❔ |
D-FINE HGNetv2 backbone + HybridEncoder encoder | COCO + Object365 | hgnetv2_encoder.py | cocoobject365_dfine_l | 22,850,912 | - | Apache-2.0 | ❔ |
D-FINE HGNetv2 backbone + HybridEncoder encoder | COCO + Object365 | hgnetv2_encoder.py | cocoobject365_dfine_x | 53,931,872 | - | Apache-2.0 | ❔ |
DEIM HGNetv2 backbone | COCO | hgnetv2_encoder.py | deim_hgnetv2_b0 | 1,850,336 | 0.326 | Apache-2.0 | ❔ |
DEIM HGNetv2 backbone | COCO | hgnetv2_encoder.py | deim_hgnetv2_b2 | 6,026,544 | 1.15 | Apache-2.0 | ❔ |
DEIM HGNetv2 backbone | COCO | hgnetv2_encoder.py | deim_hgnetv2_b4 | 13,507,680 | 2.74 | Apache-2.0 | ❔ |
DEIM HGNetv2 backbone | COCO | hgnetv2_encoder.py | deim_hgnetv2_b5 | 33,231,840 | 6.55 | Apache-2.0 | ❔ |
D-FINE HGNetv2 backbone + HybridEncoder encoder | COCO | deim_encoder.py | deim_s | 10,734,816 | - | Apache-2.0 | ❔ |
D-FINE HGNetv2 backbone + HybridEncoder encoder | COCO | deim_encoder.py | deim_m | 13,825,584 | - | Apache-2.0 | ❔ |
D-FINE HGNetv2 backbone + HybridEncoder encoder | COCO | deim_encoder.py | deim_l | 22,850,912 | - | Apache-2.0 | ❔ |
D-FINE HGNetv2 backbone + HybridEncoder encoder | COCO | deim_encoder.py | deim_x | 53,931,872 | - | Apache-2.0 | ❔ |