- Bold: Read
Paper | Summary |
---|---|
Text Summarization Techniques: A Brief Survey(2017) | |
A Survey on Methods of Abstractive Text Summarization(2014) | |
Recent automatic text summarization techniques: a survey(2017) | |
METHODOLOGIES AND TECHNIQUES FOR TEXT SUMMARIZATION: A SURVEY(2020) | |
A SURVEY OF RECENT TECHNIQUES IN AUTOMATIC TEXT SUMMARIZATION(2018) |
Paper | Summary | Reference |
---|---|---|
TextRank: Bringing Order into Texts(2004) | https://lovit.github.io/nlp/2019/04/30/textrank/ | |
Sentence Centrality Revisited for Unsupervised Summarization(2019) | TextRank + BERT + Directed Graph |
Paper | Summary | Reference |
---|---|---|
Recursive Autoencoders for ITG-based Translation(2013) | ||
Extractive Summarization using Continuous Vector Space Models(2014) |
Paper | Summary |
---|---|
GENERATING WIKIPEDIA BY SUMMARIZING LONG SEQUENCES(2018) | * Extractive(중요한 정보 뽑기) + Abstractive(wiki article 생성) * T-ED라는 트랜스포머에서 디코더만 취한 모델 구조 제안 -> 긴 시퀀스에 잘 작동 |
task-specific한 언어 모델을 학습하기 보다는 general하게 사용될 수 있는(downstream task) 언어 모델을 학습 하는 것이 트렌드
Paper | Summary |
---|---|
BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension(2019) | * BERT의 인코더와 GPT의 디코더를 합친 형태의 모델 * seq2seq denoising autoencoder 언어 모델이며, 1) noising function으로 text를 망가뜨리고 2) 그걸 다시 원래 문장으로 만드는 과정을 학습하게 된다. * text generation뿐만 아니라 comprehension에도 효과가 있어 다양한 nlp 분야의 sota 달성 |
PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive Summarization(2019) | |
Big Bird: Transformers for Longer Sequences(2020) - PPT |
- CNN/Daily Mail: Abstractive Text Summarization using Sequence-to-sequence RNNs and Beyond(2016)
- with human ratings: The price of debiasing automatic metrics in natural language evaluation(2018)
Paper | Summary |
---|---|
An Evaluation for Various Text Summarization Algorithms on Blog Summarization Dataset(2018) | |
Automatic Evaluation of Summaries Using N-gram Co-Occurrence Statistics |
Paper | Summary |
---|---|
Exploring Content Selection in Summarization of Novel Chapters(2020) |
Paper | Summary |
---|---|
Optimizing the Factual Correctness of a Summary: A Study of Summarizing Radiology Reports(2020) |