Skip to content

Commit

Permalink
add speakers slides to website
Browse files Browse the repository at this point in the history
  • Loading branch information
TimoPGros committed Jun 4, 2024
1 parent 2a11f6b commit 772b575
Showing 1 changed file with 21 additions and 21 deletions.
42 changes: 21 additions & 21 deletions content/program/workshops/prl.md
Original file line number Diff line number Diff line change
Expand Up @@ -110,27 +110,27 @@ The program includes two poster sessions in order to have enough time for discus

## List of Accepted Papers

* [poster] [**Contextual Pre-planning on Reward Machine Abstractions for Enhanced Transfer in Deep Reinforcement Learning**](../prl-papers/2.pdf) *Guy Azran, Mohamad Hosein Danesh, Stefano V Albrecht, Sarah Keren*
* [talk] [**Beyond Training: Optimizing Reinforcement Learning Based Job Shop Scheduling Through Adaptive Action Sampling**](../prl-papers/3.pdf) *Constantin Waubert de Puiseau, Christian Dörpelkus, Jannik Peters, Hasan Tercan, Tobias Meisen*
* [talk] [**Online Planning in MDPs with Stochastic Durative Actions**](../prl-papers/4.pdf) *Tal Berman, Ronen Brafman, Erez Karpas*
* [talk] [**ModelDiff: Leveraging Models for Policy Transfer with Value Lower Bounds**](../prl-papers/5.pdf) *Xiaotian Liu, Jihwan Jeong, Ayal Taitler, Michael Gimelfarb, Scott Sanner*
* [poster] [**Solving Minecraft Tasks via Model Learning**](../prl-papers/6.pdf) *Yarin Benyamin, Argaman Mordoch, Shahaf S. Shperberg, Roni Stern*
* [talk] [**A New View on Planning in Online Reinforcement Learning**](../prl-papers/7.pdf) *Kevin Roice, Parham Mohammad Panahi, Scott M. Jordan, Adam White, Martha White*
* [poster] [**Conviction-Based Planning for Sparse Reward Reinforcement Learning Problems**](../prl-papers/8.pdf) *Simon Ouellette, Eric Beaudry, Mohamed Bouguessa*
* [poster] [**Q\* Search: Heuristic Search with Deep Q-Networks**](../prl-papers/9.pdf) *Forest Agostinelli, Shahaf S. Shperberg, Alexander Shmakov, Stephen Marcus McAleer, Roy Fox, Pierre Baldi*
* [poster] [**Finding Reaction Mechanism Pathways with Deep Reinforcement Learning and Heuristic Search**](../prl-papers/10.pdf) *Rojina Panta, Mohammadamin Tavakoli, Christian Geils, Pierre Baldi, Forest Agostinelli*
* [talk] [**Planning with Language Models Through The Lens of Efficiency**](../prl-papers/11.pdf) *Michael Katz, Harsha Kokel, Kavitha Srinivas, Shirin Sohrabi*
* [poster] [**Guiding Hiearchical Reinforcement Learning in Partially Observable Environments with AI Planning**](../prl-papers/12.pdf) *Brandon Rozek, Junkyu Lee, Harsha Kokel, Michael Katz, Shirin Sohrabi*
* [poster] [**Monte Carlo Tree Search for Integrated Planning, Learning, and Execution in Nondeterministic Python**](../prl-papers/13.pdf) *Rich Levinson*
* [talk] [**Exploring Simultaneity: Learning Earliest-time Semantics for Automated Planning**](../prl-papers/14.pdf) *Ángel Aso-Mollar, Óscar Sapena, Eva Onaindia*
* [poster] [**Numeric Reward Machines**](../prl-papers/16.pdf) *Kristina Levina, Nikolaos Pappas, Athanasios Karapantelakis, Aneta Vulgarakis Feljan, Jendrik Seipp*
* [poster] [**POSGGym: A Library for Decision-Theoretic Planning and Learning in Partially Observable, Multi-Agent Environments**](../prl-papers/17.pdf) *Jonathon Schwartz, Rhys Newbury, Dana Kulic, Hanna Kurniawati*
* [talk] [**The Case for Developing a Foundation Model for Planning-like Tasks from Scratch**](../prl-papers/18.pdf) *Biplav Srivastava, Vishal Pallagani*
* [talk] [**Equivalence-Based Abstractions for Learning General Policies**](../prl-papers/19.pdf) *Dominik Drexler, Simon Ståhlberg, Blai Bonet, Hector Geffner*
* [talk] [**Automating the Generation of Prompts for LLM-based Action Choice in PDDL Planning**](../prl-papers/20.pdf) *Katharina Stein, Daniel Fišer, Jörg Hoffmann, Alexander Koller*
* [talk] [**Comparing State-of-the-art Graph Neural Networks and Transformers for General Policy Learning**](../prl-papers/23.pdf) *Nicola J. Müller, Pablo Sanchez Martin, Jörg Hoffmann, Verena Wolf, Timo P. Gros*
* [poster] [**Towards Neurosymbolic RL via Inductive Learning of Answer Set Programs**](../prl-papers/24.pdf) *Celeste Veronese, Daniele Meli, Alessandro Farinelli*
* [poster] [**SLOPE: Search with Learned Optimal Pruning-based Expansion**](../prl-papers/25.pdf) *Davor Bokan, Zlatan Ajanović, Bakir Lacevic*
* [poster] [**Contextual Pre-planning on Reward Machine Abstractions for Enhanced Transfer in Deep Reinforcement Learning**](prl-papers/2.pdf) *Guy Azran, Mohamad Hosein Danesh, Stefano V Albrecht, Sarah Keren*
* [talk] [**Beyond Training: Optimizing Reinforcement Learning Based Job Shop Scheduling Through Adaptive Action Sampling**](prl-papers/3.pdf) *Constantin Waubert de Puiseau, Christian Dörpelkus, Jannik Peters, Hasan Tercan, Tobias Meisen*
* [talk] [**Online Planning in MDPs with Stochastic Durative Actions**](prl-papers/4.pdf) *Tal Berman, Ronen Brafman, Erez Karpas*
* [talk] [**ModelDiff: Leveraging Models for Policy Transfer with Value Lower Bounds**](prl-papers/5.pdf) *Xiaotian Liu, Jihwan Jeong, Ayal Taitler, Michael Gimelfarb, Scott Sanner*
* [poster] [**Solving Minecraft Tasks via Model Learning**](prl-papers/6.pdf) *Yarin Benyamin, Argaman Mordoch, Shahaf S. Shperberg, Roni Stern*
* [talk] [**A New View on Planning in Online Reinforcement Learning**](prl-papers/7.pdf) *Kevin Roice, Parham Mohammad Panahi, Scott M. Jordan, Adam White, Martha White*
* [poster] [**Conviction-Based Planning for Sparse Reward Reinforcement Learning Problems**](prl-papers/8.pdf) *Simon Ouellette, Eric Beaudry, Mohamed Bouguessa*
* [poster] [**Q\* Search: Heuristic Search with Deep Q-Networks**](prl-papers/9.pdf) *Forest Agostinelli, Shahaf S. Shperberg, Alexander Shmakov, Stephen Marcus McAleer, Roy Fox, Pierre Baldi*
* [poster] [**Finding Reaction Mechanism Pathways with Deep Reinforcement Learning and Heuristic Search**](prl-papers/10.pdf) *Rojina Panta, Mohammadamin Tavakoli, Christian Geils, Pierre Baldi, Forest Agostinelli*
* [talk] [**Planning with Language Models Through The Lens of Efficiency**](prl-papers/11.pdf) *Michael Katz, Harsha Kokel, Kavitha Srinivas, Shirin Sohrabi*
* [poster] [**Guiding Hiearchical Reinforcement Learning in Partially Observable Environments with AI Planning**](prl-papers/12.pdf) *Brandon Rozek, Junkyu Lee, Harsha Kokel, Michael Katz, Shirin Sohrabi*
* [poster] [**Monte Carlo Tree Search for Integrated Planning, Learning, and Execution in Nondeterministic Python**](prl-papers/13.pdf) *Rich Levinson*
* [talk] [**Exploring Simultaneity: Learning Earliest-time Semantics for Automated Planning**](prl-papers/14.pdf) *Ángel Aso-Mollar, Óscar Sapena, Eva Onaindia*
* [poster] [**Numeric Reward Machines**](prl-papers/16.pdf) *Kristina Levina, Nikolaos Pappas, Athanasios Karapantelakis, Aneta Vulgarakis Feljan, Jendrik Seipp*
* [poster] [**POSGGym: A Library for Decision-Theoretic Planning and Learning in Partially Observable, Multi-Agent Environments**](prl-papers/17.pdf) *Jonathon Schwartz, Rhys Newbury, Dana Kulic, Hanna Kurniawati*
* [talk] [**The Case for Developing a Foundation Model for Planning-like Tasks from Scratch**](prl-papers/18.pdf) *Biplav Srivastava, Vishal Pallagani*
* [talk] [**Equivalence-Based Abstractions for Learning General Policies**](prl-papers/19.pdf) *Dominik Drexler, Simon Ståhlberg, Blai Bonet, Hector Geffner*
* [talk] [**Automating the Generation of Prompts for LLM-based Action Choice in PDDL Planning**](prl-papers/20.pdf) *Katharina Stein, Daniel Fišer, Jörg Hoffmann, Alexander Koller*
* [talk] [**Comparing State-of-the-art Graph Neural Networks and Transformers for General Policy Learning**](prl-papers/23.pdf) *Nicola J. Müller, Pablo Sanchez Martin, Jörg Hoffmann, Verena Wolf, Timo P. Gros*
* [poster] [**Towards Neurosymbolic RL via Inductive Learning of Answer Set Programs**](prl-papers/24.pdf) *Celeste Veronese, Daniele Meli, Alessandro Farinelli*
* [poster] [**SLOPE: Search with Learned Optimal Pruning-based Expansion**](prl-papers/25.pdf) *Davor Bokan, Zlatan Ajanović, Bakir Lacevic*

## Submission Details

Expand Down

0 comments on commit 772b575

Please sign in to comment.