Skip to content

Commit

Permalink
add consistent scaling for optimization problems #29570
Browse files Browse the repository at this point in the history
  • Loading branch information
maxnezdyur committed Dec 19, 2024
1 parent c900eec commit d3c6cd3
Show file tree
Hide file tree
Showing 6 changed files with 366 additions and 132 deletions.
29 changes: 26 additions & 3 deletions modules/optimization/src/executioners/AdjointSolve.C
Original file line number Diff line number Diff line change
Expand Up @@ -15,6 +15,7 @@
#include "NonlinearSystem.h"
#include "NodalBCBase.h"

#include "libmesh/fuzzy_equals.h"
#include "libmesh/petsc_matrix.h"
#include "libmesh/petsc_vector.h"
#include "petscmat.h"
Expand Down Expand Up @@ -52,6 +53,14 @@ AdjointSolve::AdjointSolve(Executioner & ex)
paramError("forward_system", "Forward system does not appear to be a 'NonlinearSystem'.");
if (!dynamic_cast<NonlinearSystem *>(&_nl_adjoint))
paramError("adjoint_system", "Adjoint system does not appear to be a 'NonlinearSystem'.");
// Adjoint system should never perform it's own automatic scaling. Scaling is
// taken from the forward system
_nl_adjoint.automaticScaling(false);

// We need to force the forward system to have a scaling vector. This is
// incase a user provides scaling for an individual variables but doesn't have any
// AD objects.
_nl_forward.addScalingVector();
}

bool
Expand Down Expand Up @@ -95,6 +104,10 @@ AdjointSolve::solve()

// Solve the adjoint system
solver.adjoint_solve(matrix, solution, rhs, tol, maxits);

// For scaling of the forward problem we need to apply correction factor
solution *= _nl_forward.getVector("scaling_factors");

_nl_adjoint.update();
if (solver.get_converged_reason() < 0)
{
Expand All @@ -118,9 +131,6 @@ AdjointSolve::assembleAdjointSystem(SparseMatrix<Number> & matrix,
const NumericVector<Number> & /*solution*/,
NumericVector<Number> & rhs)
{
if (_nl_adjoint.hasVector("scaling_factors"))
mooseWarning("Scaling factors are given to adjoint variables by the user. It is not necessary "
"to scale a adjoint system therefore the scaling factors will not be used.");

_problem.computeJacobian(*_nl_forward.currentSolution(), matrix, _forward_sys_num);

Expand Down Expand Up @@ -174,6 +184,19 @@ AdjointSolve::applyNodalBCs(SparseMatrix<Number> & matrix,
void
AdjointSolve::checkIntegrity()
{
const auto adj_vars = _nl_adjoint.getVariables(0);
for (const auto & adj_var : adj_vars)
// If the user supplies any scaling factors for individual variables the
// adjoint system won't be consistent.
if (!absolute_fuzzy_equals(adj_var->scalingFactor(), 1.0))
mooseError("User supplied scaling factors for adjoint variables. Adjoint system is scaled "
"automatically by the forward system.");

// This is to prevent automatic scaling of the adjoint system. Scaling is
// taken from the forward system
if (_nl_adjoint.hasVector("scaling_factors"))
_nl_adjoint.removeVector("scaling_factors");

// Main thing is that the number of dofs in each system is the same
if (_nl_forward.system().n_dofs() != _nl_adjoint.system().n_dofs())
mooseError(
Expand Down
Original file line number Diff line number Diff line change
@@ -0,0 +1,223 @@
[Mesh]
[generated]
type = GeneratedMeshGenerator
dim = 2
nx = 10
ny = 10
ymin = 0
xmin = 0
xmax = 10
ymax = 10
[]
[]

[Problem]
nl_sys_names = 'nl0 adjoint'
kernel_coverage_check = FALSE
[]

[Variables]
[T_real]
initial_condition = 1e-8
scaling = 10
[]
[T_imag]
initial_condition = 1e-8
[]
[T_real_adj]
solver_sys = adjoint
[]
[T_imag_adj]
solver_sys = adjoint
[]
[]

[Kernels]
[heat_conduction_real]
type = MatDiffusion
variable = T_real
diffusivity = k
[]
[heat_source_real]
type = MatCoupledForce
variable = T_real
v = T_imag
material_properties = 'force_mat'
[]

[heat_conduction_imag]
type = MatDiffusion
variable = T_imag
diffusivity = k
[]
[heat_source_imag]
type = MatCoupledForce
variable = T_imag
v = T_real
material_properties = 'force_mat'
coef = -1
[]
[]

[Materials]
[k_mat]
type = GenericFunctionMaterial
prop_names = 'k'
prop_values = 'kappa_func'
[]
[mats]
type = GenericConstantMaterial
prop_names = 'rho omega cp '
prop_values = '1.0 1.0 1.0 '
[]
[force_mat]
type = ParsedMaterial
property_name = force_mat
expression = 'rho * omega * cp'
material_property_names = 'rho omega cp'
[]
[phase]
type = ADParsedMaterial
coupled_variables = 'T_real T_imag'
expression = 'atan2(T_imag, T_real)'
property_name = phase
[]
[]

[Functions]
[gauss]
type = ParsedFunction
expression = 'exp(-2.0 *(x^2 + y^2 + z^2)/(beam_radii^2))'
symbol_names = 'beam_radii'
symbol_values = '0.1'
[]
[kappa_func]
type = ParsedOptimizationFunction
expression = 'k '
param_symbol_names = 'k '
param_vector_name = 'params/k'
[]
[]

[BCs]
[real_top]
type = FunctionNeumannBC
variable = T_real
boundary = top
function = 'exp((-2.0 *(x)^2)/0.1)'
[]
[]

[DiracKernels]
[misfit_real]
type = ReporterPointSource
variable = T_real_adj
x_coord_name = measure_data_real/measurement_xcoord
y_coord_name = measure_data_real/measurement_ycoord
z_coord_name = measure_data_real/measurement_zcoord
value_name = measure_data_real/misfit_values
[]
[misfit_imag]
type = ReporterPointSource
variable = T_imag_adj
x_coord_name = measure_data_imag/measurement_xcoord
y_coord_name = measure_data_imag/measurement_ycoord
z_coord_name = measure_data_imag/measurement_zcoord
value_name = measure_data_imag/misfit_values
[]
[]

[AuxVariables]
[phase]
[]
[]

[AuxKernels]
[phase]
type = ParsedAux
variable = phase
coupled_variables = 'T_imag T_real'
expression = 'atan2(T_imag, T_real)'
execute_on = 'TIMESTEP_END'
[]
[]

[Reporters]
[measure_data_real]
type = OptimizationData
variable = T_real
objective_name = objective_value
measurement_values = '0.10391 -0.0064'
measurement_points = '0.55 10 0
3.55 10 0'
[]
[measure_data_imag]
type = OptimizationData
objective_name = objective_value
variable = T_imag
measurement_values = '-0.08234 -0.00181'
measurement_points = '0.55 10 0
3.55 10 0'
[]
[params]
type = ConstantReporter
real_vector_names = 'k'
real_vector_values = '2' # Dummy value
[]
[gradient]
type = ParsedVectorReporter
name = inner
reporter_names = 'gradient_real/inner_product gradient_imag/inner_product'
reporter_symbols = 'a b'
expression = 'a+b'
execute_on = ADJOINT_TIMESTEP_END
execution_order_group = 1
[]
[obj]
type = ParsedScalarReporter
name = value
reporter_names = 'measure_data_real/objective_value measure_data_imag/objective_value'
reporter_symbols = 'a b'
expression = 'a+b'
execute_on = ADJOINT_TIMESTEP_END
execution_order_group = 1
[]
[]

[VectorPostprocessors]
[gradient_real]
type = ElementOptimizationDiffusionCoefFunctionInnerProduct
variable = T_real_adj
forward_variable = T_real
function = kappa_func
execute_on = ADJOINT_TIMESTEP_END
[]
[gradient_imag]
type = ElementOptimizationDiffusionCoefFunctionInnerProduct
variable = T_imag_adj
forward_variable = T_imag
function = kappa_func
execute_on = ADJOINT_TIMESTEP_END
[]
[]

[Executioner]
type = SteadyAndAdjoint
forward_system = nl0
adjoint_system = adjoint
nl_rel_tol = 1e-12
nl_abs_tol = 1e-10
l_tol = 1e-10

automatic_scaling = false

petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
line_search = l2
verbose = true
[]

[Outputs]
console = true
execute_on = FINAL
[]
Original file line number Diff line number Diff line change
@@ -0,0 +1,33 @@
{
"reporters": {
"OptimizationReporter": {
"type": "GeneralOptimization",
"values": {
"grad_parameter_results": {
"type": "std::vector<double>"
},
"objective_value": {
"type": "double"
},
"parameter_results": {
"type": "std::vector<double>"
}
}
}
},
"time_steps": [
{
"OptimizationReporter": {
"grad_parameter_results": [
-0.00141982365629666
],
"objective_value": 0.00025601754088785565,
"parameter_results": [
1.05
]
},
"time": 0.0,
"time_step": 0
}
]
}
55 changes: 55 additions & 0 deletions modules/optimization/test/tests/misc/scaling_test/main.i
Original file line number Diff line number Diff line change
@@ -0,0 +1,55 @@
[Optimization]
[]

[OptimizationReporter]
type = GeneralOptimization
objective_name = objective_value
parameter_names = 'parameter_results'
num_values = '1'
initial_condition = '1.05'
lower_bounds = '0.001'
[]

[Executioner]
type = Optimize
tao_solver = taobqnktr
# These options are to force an initial residual evaluation only.
petsc_options_iname = '-tao_max_it -tao_gatol'
petsc_options_value = '1 1e100'
verbose = true
output_optimization_iterations = true
[]

[MultiApps]
[forward]
type = FullSolveMultiApp
input_files = forward_and_adjoint.i
execute_on = "FORWARD"
[]
[]

[Transfers]
# FORWARD transfers
[toForward_measument]
type = MultiAppReporterTransfer
to_multi_app = forward
from_reporters = 'OptimizationReporter/parameter_results'
to_reporters = 'params/k'
[]
[fromForward]
type = MultiAppReporterTransfer
from_multi_app = forward
from_reporters = 'obj/value
gradient/inner'
to_reporters = 'OptimizationReporter/objective_value
OptimizationReporter/grad_parameter_results'
[]
[]

[Outputs]
[out]
type = JSON
execute_on = 'FORWARD'
execute_system_information_on = NONE
[]
[]
Loading

0 comments on commit d3c6cd3

Please sign in to comment.