Skip to content

Commit

Permalink
Merge pull request #685 from ie3-institute/sh/#684-pv-model-documenta…
Browse files Browse the repository at this point in the history
…tion

fix pv_model documentation
  • Loading branch information
danielfeismann authored Dec 19, 2023
2 parents a259c4c + 50bb6a3 commit db564e6
Showing 1 changed file with 20 additions and 19 deletions.
39 changes: 20 additions & 19 deletions docs/readthedocs/models/pv_model.md
Original file line number Diff line number Diff line change
Expand Up @@ -30,7 +30,7 @@ To calculate the overall feed in of the pv unit, the sum of the direct radiation

**Caution:** all angles are given in radian!

The azimuth angle $\alpha_{E}$ starts at negative values in the East and moves over 0° (South) towards positive values in the West. [Source](https://www.photovoltaik.org/wissen/azimutwinkel)
The surface azimuth angle $\alpha_{E}$ starts at negative values in the East and moves over 0° (South) towards positive values in the West. [(Source)](https://www.photovoltaik.org/wissen/azimutwinkel)

### Declination Angle

Expand All @@ -46,8 +46,8 @@ $$
Based on $J$ the declination angle $\delta$ (in radian!) can be calculated as follows:

$$
\begin{eqnarray*}\delta = 0.006918 - 0.399912 \cdot cos(J) + 0.070257 \cdot
sin(J) \\ - 0.006758 \cdot cos(2\cdot J) + 0.000907 \cdot sin(2 \cdot J) \\ - 0.002697 \cdot cos(3 \cdot J) + 0.00148 \cdot sin(3 \cdot J)
\begin{eqnarray*}\delta = 0.006918 - 0.399912 \cdot \cos(J) + 0.070257 \cdot
\sin(J) \\ - 0.006758 \cdot \cos(2\cdot J) + 0.000907 \cdot \sin(2 \cdot J) \\ - 0.002697 \cdot \cos(3 \cdot J) + 0.00148 \cdot \sin(3 \cdot J)
\end{eqnarray*}
$$

Expand Down Expand Up @@ -92,8 +92,8 @@ $$
**λ** = longitude of the location of the PV panel

$$
\begin{eqnarray*}ET = 0.0066 + 7.3525 \cdot cos(J + 1.4992378274631293) \\ +
9.9359 \cdot cos(2 \cdot J + 1.9006635554218247) \\ + 0.3387 \cdot cos(3 \cdot J + 1.8360863730980346)
\begin{eqnarray*}ET = 0.0066 + 7.3525 \cdot \cos(J + 1.4992378274631293) \\ +
9.9359 \cdot \cos(2 \cdot J + 1.9006635554218247) \\ + 0.3387 \cdot \cos(3 \cdot J + 1.8360863730980346)
\end{eqnarray*}
$$

Expand All @@ -112,18 +112,19 @@ $$

### Sunrise Angle

The hour angles at sunrise and sunset are very useful quantities to know. These two values have the same absolute value, however the sunrise angle ($\omega_{SR}$) is positive and the sunset angle ($\omega_{S}$) is negative. Both can be calculated from:
The hour angles at sunrise and sunset are very useful quantities to know. These two values have the same absolute value, however the sunset angle ($\omega_{SS}$) is positive and the sunrise angle ($\omega_{SR}$) is negative. Both can be calculated from:

$$
\omega_{SR}=\cos^{-1}(-\tan (\phi) \cdot \tan (\delta))
\omega_{SS}=\cos^{-1}(-\tan (\phi) \cdot \tan (\delta))
$$

$$
\omega_{SS}=-\omega_{SR}
\omega_{SR}=-\omega_{SS}
$$

*with*\
**$\delta$** = the declination angle
**$\delta$** = the declination angle\
**$\phi$** = observer's latitude

**References:**
```{eval-rst}
Expand All @@ -136,7 +137,7 @@ $$
Represents the angle between the horizontal and the line to the sun, that is, the complement of the zenith angle.

$$
sin(\alpha_{s}) = sin (\phi) \cdot sin (\delta) + cos (\delta) \cdot cos (\omega) \cdot cos (\phi)
\sin(\alpha_{s}) = \sin (\phi) \cdot \sin (\delta) + \cos (\delta) \cdot \cos (\omega) \cdot \cos (\phi)
$$

*with*\
Expand Down Expand Up @@ -177,14 +178,13 @@ $$
\cos(\delta) \cdot \cos(\phi) \cdot \cos(\gamma_{e}) \cdot
\cos(\omega) \\ + \cos(\delta) \cdot \sin(\phi) \cdot \sin(\gamma_{e})
\cdot \cos(\alpha_{e}) \cdot \cos(\omega) \\ +
cos(\delta) \cdot sin(\gamma_{e}) \cdot sin(\alpha_{e}) \cdot
sin(\omega))
\cos(\delta) \cdot \sin(\gamma_{e}) \cdot \sin(\alpha_{e}) \cdot
\sin(\omega))
\end{eqnarray*}
$$

*with*\
**$\alpha_e$** = sun azimuth\
**$\alpha_s$** = solar altitude angle\
**$\alpha_e$** = surface azimuth angle\
**$\gamma_e$** = slope angle of the surface\
**$\delta$** = the declination angle\
**$\phi$** = observer's latitude\
Expand Down Expand Up @@ -254,6 +254,8 @@ $$
\end{eqnarray*}
$$

Additionally, the condition $$\theta_{g} < 90°$$ must be met (sun must not be behind the surface).

*with*\
**$\omega$** = hour angle\
**$\omega_{SS}$** = hour angle $\omega$ at sunset\
Expand All @@ -264,10 +266,10 @@ From here on, formulas from given reference below are used:

$$
\begin{eqnarray*}
a = (\sin(\delta) \cdot \sin(\phi) \cdot \cos(\gamma_{e})
a = (\sin(\delta) \cdot \sin(\phi) \cdot \cos(\gamma_{e}) -
\sin(\delta) \cdot \cos(\phi) \cdot \sin(\gamma_{e}) \cdot
\cos(\alpha_{e})) \cdot (\omega_{2} - \omega_{1}) \\ + (\cos(\delta) \cdot \cos(\phi) \cdot \cos(\gamma_{e}) +
\cos(\delta) \cdot \sin(\phi) \cdot \sin(\gamma\_{e}) \cdot
\cos(\delta) \cdot \sin(\phi) \cdot \sin(\gamma_{e}) \cdot
\cos(\alpha_{e})) \cdot (\sin(\omega_{2}) \\ -
\sin(\omega_{1})) - (\cos(\delta) \cdot \sin(\gamma_{e}) \cdot \sin(\alpha_{e})) \cdot (\cos(\omega_{2}) - \cos(\omega_{1}))
\end{eqnarray*}
Expand All @@ -286,10 +288,10 @@ $$
*with*\
**$\delta$** = the declination angle\
**$\phi$** = observer's latitude\
**$\gamma$** = slope angle of the surface\
**$\gamma_{e}$** = slope angle of the surface\
**$\omega_1$** = hour angle $\omega$\
**$\omega_2$** = hour angle $\omega$ + 1 hour\
**$\alpha_e$** = sun azimuth\
**$\alpha_e$** = surface azimuth angle\
**$E_{dir,H}$** = beam radiation (horizontal surface)

**Reference:**
Expand Down Expand Up @@ -398,7 +400,6 @@ $$
**$\theta_{z}$** = zenith angle\
**$\theta_{g}$** = angle of incidence\
**$\alpha_{s}$** = solar altitude angle\
**$\alpha_{z}$** = sun azimuth\
**$\gamma_{e}$** = slope angle of the surface\
**$I_{0}$** = Extraterrestrial Radiation\
**$m$** = air mass\
Expand Down

0 comments on commit db564e6

Please sign in to comment.