- Final update: 2019. 09. 26.
- All right reserved @ Il Gu Yi 2019
This repository is a collection of various generative models (GAN, VAE, Normalizing flow, Autoregressive models, etc) implemented by TensorFlow version 2.0 style
TensorFlow
2.0.0-rc1 (exceptnormalizing_flow/nice.ipynb
which is based on tf version 1.13.1)- Python 3.6
- Python libraries:
numpy
,matplotlib
,PIL
,imageio
urllib
,zipfile
- TensorFlow libraries & extensions:
- Jupyter notebook
- OS X and Linux (Not validated on Windows OS)
- Generative Adversarial Nets paper arXiv:1406.2661
- gan.ipynb
MNIST | Fashion MNIST |
---|---|
- Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks paper arXiv:1511.06434
- dcgan.ipynb
MNIST | Fashion MNIST |
---|---|
- Conditional Generative Adversarial Nets arXiv:1411.1784
- cgan.ipynb
MNIST | |
Fashion MNIST |
- Least Squares Generative Adversarial Networks arXiv:1611.04076
- lsgan.ipynb
MNIST | Fashion MNIST |
---|---|
- Adversarial Feature Learning arXiv:1605.09782
- bigan.ipynb
MNIST | |
Fashion MNIST |
- Wasserstein GAN arXiv:1701.07875
- wgan.ipynb
MNIST | Fashion MNIST |
---|---|
- Improved Training of Wasserstein GANs arXiv:1704.00028
- wgan-gp.ipynb
MNIST | Fashion MNIST |
---|---|
- Image-to-Image Translation with Conditional Adversarial Networks arXiv:1611.07004
- pix2pix.ipynb
facades | |
cityspaces |
- Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks arXiv:1703.10593
- cyclegan.ipynb
MNIST | |
Fashion MNIST |
MNIST | Fashion MNIST |
---|---|
- Neural Autoregressive Distribution Estimation arXiv:1605.02226
- nade.ipynb
MNIST | Fashion MNIST |
---|---|
Il Gu Yi