Skip to content

ilkerhalil/fifa-predictior

Repository files navigation

FIFA PREDICTIOR

FIFA Player Overall Rating Prediction Model

Dataset

The model utilizes a CSV file as the training dataset containing various attributes of FIFA players. The dataset includes features such as age, height_cm, marking, body_type, skill_moves (1-5), and other football player characteristics. "overall_rating" has been designated as the target variable.

Model Architecture

This model is a regression model used to predict the "Overall Rating," and it is built using an artificial neural network. The layers of the model are structured as follows:

Input Layer: 512 neurons, ReLU activation function Hidden Layer: 128 neurons, ReLU activation function Output Layer: 1 neuron, Linear activation function The model is compiled using the "adam" optimization algorithm and the "mean_squared_error" loss function.

Install Requirements

Install Make

apt update && apt install make

Install Docker

# Add Docker's official GPG key:
sudo apt-get update
sudo apt-get install ca-certificates curl gnupg
sudo install -m 0755 -d /etc/apt/keyrings
curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo gpg --dearmor -o /etc/apt/keyrings/docker.gpg
sudo chmod a+r /etc/apt/keyrings/docker.gpg

# Add the repository to Apt sources:
echo \
  "deb [arch=$(dpkg --print-architecture) signed-by=/etc/apt/keyrings/docker.gpg] https://download.docker.com/linux/ubuntu \
  $(. /etc/os-release && echo "$VERSION_CODENAME") stable" | \
  sudo tee /etc/apt/sources.list.d/docker.list > /dev/null
sudo apt-get update
sudo apt-get install docker-ce docker-ce-cli containerd.io docker-buildx-plugin docker-compose-plugin

# Manage Docker as a non-root user
```sh
sudo groupadd docker
sudo usermod -aG docker $USER
newgrp docker

Install Kubectl

curl -LO "https://dl.k8s.io/release/$(curl -L -s https://dl.k8s.io/release/stable.txt)/bin/linux/amd64/kubectl"
chmod +x ./kubectl
mv kubectl /usr/local/bin
  • Check installation
kubectl version

Install MicroK8S

sudo snap install microk8s --classic
microk8s enable dns
microk8s enable dashboard
microk8s enable storage
microk8s enable cert-manager
  • Set config for kubernetes
microk8s config > .kube/config
  • Check microk8s installation
kubectl get nodes

Install Kubeflow

Install kustomize

curl -s "https://raw.githubusercontent.com/kubernetes-sigs/kustomize/master/hack/install_kustomize.sh"  | bash
chmod +x ./kustomize
sudo mv kustomize /usr/local/bin

Install kubeflow

git clone https://github.com/kubeflow/manifests.git
git checkout v1.8.0 #Checkoput v1.8.0 version for kubeflow
while ! kustomize build example | kubectl apply -f -; do echo "Retrying to apply resources"; sleep 10; done

Install Python && SetUp pyenv

curl https://pyenv.run | bash

Add those commands below to your shell

export PYENV_ROOT="$HOME/.pyenv
command -v pyenv >/dev/null || export PATH="$PYENV_ROOT/bin:$PATH"
eval "$(pyenv init -)"

Set up python with pyenv

Python version will be specified with ".python_env" file in current directory

pyenv install

Instructions

Set up venv for Python in the current directory

python3 -m venv .venv
source .venv/bin/activate

Install Python Requirements

pip install -r dev_requirements.txt
pip install -r requirements.txt

Format code

make format

Lint Code

make lint

Create Model

make create-model

Port-Forward Kubernetes for local

kubectl port-forward svc/istio-ingressgateway -n istio-system --address 0.0.0.0 8080:80 &

Deploy Kubeflow

Tag for model. Pass make KF_PIPELINES_ENDPOINT and MODEL_OUTPUT_PATH environment

make kfp-compile TAG=1.2.4 KF_PIPELINES_ENDPOINT="http://localhost:8080"  MODEL_OUTPUT_PATH="/data"

Deploy fuction for KServe

make deploy-function

Call Model

make call-model

Acknowledgements

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published