-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
3 changed files
with
248 additions
and
0 deletions.
There are no files selected for viewing
Empty file.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,35 @@ | ||
import os | ||
import vbi | ||
import glob | ||
import unittest | ||
from os.path import join | ||
from unittest import TestLoader, TextTestRunner, TestSuite | ||
|
||
|
||
|
||
def get_module_path(): | ||
''' | ||
Returns the location of the tests folder | ||
''' | ||
tests_folder = "tests" | ||
location = vbi.__file__ | ||
location = location.replace('__init__.py', '') | ||
location = join(location, tests_folder) | ||
|
||
return location | ||
|
||
|
||
def tests(): | ||
""" | ||
Find all test_*.py files in the tests folder and run them | ||
""" | ||
|
||
path = get_module_path() | ||
test_suite = unittest.TestLoader().discover(path, pattern='test_*.py') | ||
test_runner = TextTestRunner().run(test_suite) | ||
|
||
|
||
|
||
if __name__ == '__main__': | ||
tests() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,213 @@ | ||
import unittest | ||
import numpy as np | ||
from vbi.feature_extraction.features import * | ||
|
||
class TestAbsEnergy(unittest.TestCase): | ||
|
||
def test_positive_values(self): | ||
ts = [1, 2, 3, 4, 5] | ||
expected_values = [55] | ||
expected_labels = ['abs_energy_0'] | ||
|
||
values, labels = abs_energy(ts) | ||
|
||
self.assertEqual(values, expected_values) | ||
self.assertEqual(labels, expected_labels) | ||
|
||
def test_negative_values(self): | ||
ts = [-1, -2, -3, -4, -5] | ||
expected_values = [55] | ||
expected_labels = ['abs_energy_0'] | ||
|
||
values, labels = abs_energy(ts) | ||
|
||
self.assertEqual(values, expected_values) | ||
self.assertEqual(labels, expected_labels) | ||
|
||
def test_mixed_values(self): | ||
ts = [-1, 2, -3, 4, -5] | ||
expected_values = [55] | ||
expected_labels = ['abs_energy_0'] | ||
|
||
values, labels = abs_energy(ts) | ||
|
||
self.assertEqual(values, expected_values) | ||
self.assertEqual(labels, expected_labels) | ||
|
||
def test_empty_ts(self): | ||
ts = [] | ||
expected_values = [np.nan] | ||
expected_labels = ["abs_energy_0"] | ||
|
||
values, labels = abs_energy(ts) | ||
|
||
self.assertEqual(values, expected_values) | ||
self.assertEqual(labels, expected_labels) | ||
|
||
def test_nan_values(self): | ||
ts = [1, np.nan, 3, 4, 5] | ||
expected_values = [np.nan] | ||
expected_labels = ['abs_energy_0'] | ||
|
||
values, labels = abs_energy(ts) | ||
|
||
self.assertTrue(np.isnan(values[0])) | ||
self.assertEqual(labels, expected_labels) | ||
|
||
def test_infinite_values(self): | ||
ts = [1, np.inf, 3, 4, 5] | ||
expected_values = [np.nan] | ||
expected_labels = ['abs_energy_0'] | ||
|
||
values, labels = abs_energy(ts) | ||
|
||
self.assertTrue(np.isnan(values[0])) | ||
self.assertEqual(labels, expected_labels) | ||
|
||
def test_positive_values_fixed(self): | ||
ts = np.array([[1, 2, 3, 4], [5, 6, 7, 8]]) | ||
expected_values = [30, 174] | ||
expected_labels = ['abs_energy_0', 'abs_energy_1'] | ||
|
||
values, labels = abs_energy(ts) | ||
|
||
self.assertEqual(list(values), expected_values) | ||
self.assertEqual(list(labels), expected_labels) | ||
|
||
class TestAuc(unittest.TestCase): | ||
|
||
def test_computes_area_under_curve(self): | ||
ts = np.array([[1, 2, 3], [4, 5, 6]]) | ||
fs = 2 | ||
expected_values = np.array([2.0, 5.0]) | ||
expected_labels = ["auc_0", "auc_1"] | ||
|
||
values, labels = auc(ts, fs) | ||
|
||
self.assertTrue(np.allclose(values, expected_values)) | ||
self.assertEqual(labels, expected_labels) | ||
|
||
def test_accepts_ndarrays_input(self): | ||
ts = np.array([[1, 2, 3], [4, 5, 6]]) | ||
fs = 2 | ||
expected_values = np.array([2.0, 5.0]) | ||
expected_labels = ["auc_0", "auc_1"] | ||
|
||
values, labels = auc(ts, fs) | ||
|
||
self.assertTrue(np.allclose(values, expected_values)) | ||
self.assertEqual(labels, expected_labels) | ||
|
||
def test_handles_nan_values(self): | ||
ts = np.array([[1, np.nan, 3], [4, 5, np.nan]]) | ||
fs = 2 | ||
expected_values = np.array([np.nan, np.nan]) | ||
expected_labels = ["auc_0", "auc_1"] | ||
|
||
values, labels = auc(ts, fs) | ||
|
||
self.assertTrue(np.isnan(values).all()) | ||
self.assertEqual(labels, expected_labels) | ||
|
||
class TestCalcVar(unittest.TestCase): | ||
|
||
def test_one_region_one_sample(self): | ||
ts = np.array([1]) | ||
expected_values = [0] | ||
expected_labels = ["variance_0"] | ||
values, labels = calc_var(ts) | ||
self.assertEqual(values, expected_values) | ||
self.assertEqual(labels, expected_labels) | ||
|
||
def test_multiple_regions_one_sample(self): | ||
ts = np.array([[1], [2], [3]]) | ||
expected_values = [0, 0, 0] | ||
expected_labels = ["variance_0", "variance_1", "variance_2"] | ||
values, labels = calc_var(ts) | ||
np.testing.assert_array_equal(values, expected_values) | ||
np.testing.assert_array_equal(labels, expected_labels) | ||
|
||
def test_one_region_multiple_samples(self): | ||
ts = np.array([[1, 2, 3]]) | ||
expected_values = [0.66666667] | ||
expected_labels = ["variance_0"] | ||
values, labels = calc_var(ts) | ||
self.assertEqual(np.allclose(values, expected_values), True) | ||
self.assertEqual(labels, expected_labels) | ||
|
||
def test_empty_list_input(self): | ||
ts = [] | ||
expected_values = [np.nan] | ||
expected_labels = ["variance_0"] | ||
values, labels = calc_var(ts) | ||
self.assertEqual(values, expected_values) | ||
self.assertEqual(labels, expected_labels) | ||
|
||
# Returns empty list when input is a list of empty numpy arrays. | ||
def test_list_of_empty_numpy_arrays_input(self): | ||
ts = [np.array([]), np.array([]), np.array([])] | ||
expected_values = [np.nan] | ||
expected_labels = ["variance_0"] | ||
values, labels = calc_var(ts) | ||
self.assertEqual(values, expected_values) | ||
self.assertEqual(labels, expected_labels) | ||
|
||
class TestCalcStd(unittest.TestCase): | ||
|
||
def test_handles_empty_input(self): | ||
ts = [] | ||
expected_values = [np.nan] | ||
expected_labels = ["std_0"] | ||
|
||
values, labels = calc_std(ts) | ||
|
||
self.assertEqual(values, expected_values) | ||
self.assertEqual(labels, expected_labels) | ||
|
||
def test_handles_nan_values(self): | ||
ts = np.array([[1, 2, np.nan], [4, np.nan, 6]]) | ||
expected_values = [np.nan, np.nan] | ||
expected_labels = ["std_0", "std_1"] | ||
|
||
values, labels = calc_std(ts) | ||
|
||
self.assertTrue(np.isnan(values).all()) | ||
self.assertEqual(labels, expected_labels) | ||
|
||
def test_multiple_regions_and_samples(self): | ||
ts = np.array([[1, 2, 3], [4, 5, 6]]) | ||
expected_values = [0.816497, 0.816497] | ||
expected_labels = ["std_0", "std_1"] | ||
|
||
values, labels = calc_std(ts) | ||
self.assertTrue(np.allclose(values, expected_values)) | ||
self.assertEqual(labels, expected_labels) | ||
|
||
def test_handles_infinite_values(self): | ||
ts = np.array([[1, 2, np.inf], [4, -np.inf, 6]]) | ||
expected_values = [np.nan, np.nan] | ||
expected_labels = ["std_0", "std_1"] | ||
|
||
values, labels = calc_std(ts) | ||
|
||
self.assertTrue(np.isnan(values).all()) | ||
self.assertEqual(labels, expected_labels) | ||
|
||
class TestFcSum(unittest.TestCase): | ||
|
||
def test_calculate_sum_of_fc(self): | ||
x = np.array([[1, 2, 3], [4, 5, 6]]) | ||
value, label = fc_sum(x) | ||
self.assertAlmostEqual(value, 2.0) | ||
self.assertEqual(label, "fc_sum") | ||
|
||
def test_return_zero_for_single_sample_input(self): | ||
x = np.array([[1], [2]]) | ||
value, label = fc_sum(x) | ||
self.assertAlmostEqual(value, 0.0) | ||
|
||
|
||
if __name__ == '__main__': | ||
unittest.main() | ||
# obj = TestModules() | ||
# obj.test_HH_Solution() |