Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

gnss: rename JPL-SIDESHOW to SIDESHOW #1240

Merged
merged 3 commits into from
Jul 29, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion docs/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -112,4 +112,4 @@ _This disclaimer was adapted from the [MetPy project](https://github.com/Unidata

Yunjun, Z., Fattahi, H., and Amelung, F. (2019), Small baseline InSAR time series analysis: Unwrapping error correction and noise reduction, _Computers & Geosciences_, _133_, 104331. [ [doi](https://doi.org/10.1016/j.cageo.2019.104331) \| [arxiv](https://doi.org/10.31223/osf.io/9sz6m) \| [data](https://doi.org/10.5281/zenodo.3464190) \| [notebook](https://github.com/geodesymiami/Yunjun_et_al-2019-MintPy) ]

In addition to the above, we recommend that you cite the original publications that describe the algorithms used in your specific analysis. They are noted briefly in the [default template file](../mintpy/defaults/smallbaselineApp.cfg) and listed in the [references.md file](./references.md).
In addition to the above, we recommend that you cite the original publications that describe the algorithms used in your specific analysis. They are noted briefly in the [default template file](../src/mintpy/defaults/smallbaselineApp.cfg) and listed in the [reference file](./references.md).
68 changes: 45 additions & 23 deletions docs/references.md
Original file line number Diff line number Diff line change
@@ -1,45 +1,67 @@
## Revalent Scientific Papers
## Revalent Literature

+ Berardino, P., G. Fornaro, R. Lanari, and E. Sansosti (2002), A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms, _Geoscience and Remote Sensing, IEEE Transactions on, 40_(11), 2375-2383, doi:10.1109/TGRS.2002.803792.
+ Berardino, P., Fornaro, G., Lanari, R., & Sansosti, E. (2002). A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. _IEEE Transactions on Geoscience and Remote Sensing, 40_(11), 2375-2383. doi:[10.1109/TGRS.2002.803792](https://doi.org/10.1109/TGRS.2002.803792)

+ Chaussard, E., F. Amelung, and Y. Aoki (2013), Characterization of open and closed volcanic systems in Indonesia and Mexico using InSAR time series, _Journal of Geophysical Research: Solid Earth, 118_(8), 3957-3969, doi:10.1002/jgrb.50288.
+ Blewitt, G., Hammond, W., & Kreemer, C. (2018). Harnessing the GPS data explosion for interdisciplinary science. _Eos, 99_. doi:[10.1029/2018EO104623](https://doi.org/10.1029/2018EO104623)

+ Chaussard, E., R. Bürgmann, H. Fattahi, R. M. Nadeau, T. Taira, C. W. Johnson, and I. Johanson (2015), Potential for larger earthquakes in the East San Francisco Bay Area due to the direct connection between the Hayward and Calaveras Faults, _Geophysical Research Letters, 42_(8), 2734-2741, doi:10.1002/2015GL063575.
+ Chaussard, E., Amelung, F., & Aoki, Y. (2013). Characterization of open and closed volcanic systems in Indonesia and Mexico using InSAR time series. _Journal of Geophysical Research: Solid Earth, 118_(8), 3957-3969. doi:[10.1002/jgrb.50288](https://doi.org/10.1002/jgrb.50288)

+ Chen, C. W., and H. A. Zebker (2001), Two-dimensional phase unwrapping with use of statistical models for cost functions in nonlinear optimization, _JOSA A, 18_(2), 338-351, doi:10.1364/JOSAA.18.000338.
+ Chaussard, E., Bürgmann, R., Fattahi, H., Nadeau, R. M., Taira, T., Johnson, C. W., & Johanson, I. (2015). Potential for larger earthquakes in the East San Francisco Bay Area due to the direct connection between the Hayward and Calaveras Faults. _Geophysical Research Letters, 42_(8), 2734-2741. doi:[10.1002/2015GL063575](https://doi.org/10.1002/2015GL063575)

+ Doin, M. P., C. Lasserre, G. Peltzer, O. Cavalié, and C. Doubre (2009), Corrections of stratified tropospheric delays in SAR interferometry: Validation with global atmospheric models, _Journal of Applied Geophysics, 69_(1), 35-50, doi:10.1016/j.jappgeo.2009.03.010.
+ Chen, C. W., & Zebker, H. A. (2001). Two-dimensional phase unwrapping with use of statistical models for cost functions in nonlinear optimization. _Journal of the Optical Society of America A, 18_(2), 338-351. doi:[10.1364/JOSAA.18.000338](https://doi.org/10.1364/JOSAA.18.000338)

+ Fattahi, H., and F. Amelung (2013), DEM Error Correction in InSAR Time Series, _Geoscience and Remote Sensing, IEEE Transactions on, 51_(7), 4249-4259, doi:10.1109/TGRS.2012.2227761.
+ Doin, M. P., Lasserre, C., Peltzer, G., Cavalié, O., & Doubre, C. (2009). Corrections of stratified tropospheric delays in SAR interferometry: Validation with global atmospheric models. _Journal of Applied Geophysics, 69_(1), 35-50. doi:[10.1016/j.jappgeo.2009.03.010](https://doi.org/10.1016/j.jappgeo.2009.03.010)

+ Fattahi, H., and F. Amelung (2015), InSAR bias and uncertainty due to the systematic and stochastic tropospheric delay, _Journal of Geophysical Research: Solid Earth, 120_(12), 8758-8773, doi:10.1002/2015JB012419.
+ Efron, B., & Tibshirani, R. (1986). Bootstrap methods for standard errors, confidence intervals, and other measures of statistical accuracy. _Statistical science_, 54-75. doi:[10.1214/ss/1177013815](https://doi.org/10.1214/ss/1177013815)

+ Fattahi, H., P. Agram, and M. Simons (2016), A Network-Based Enhanced Spectral Diversity Approach for TOPS Time-Series Analysis, _IEEE Transactions on Geoscience and Remote Sensing, 55_(2), 777-786, doi:10.1109/TGRS.2016.2614925.
+ Fattahi, H., & Amelung, F. (2013). DEM Error Correction in InSAR Time Series. _IEEE Transactions on Geoscience and Remote Sensing, 51_(7), 4249-4259. doi:[10.1109/TGRS.2012.2227761](https://doi.org/10.1109/TGRS.2012.2227761)

+ Jolivet, R., R. Grandin, C. Lasserre, M. P. Doin, and G. Peltzer (2011), Systematic InSAR tropospheric phase delay corrections from global meteorological reanalysis data, _Geophysical Research Letters, 38_(17), L17311, doi:10.1029/2011GL048757.
+ Fattahi, H., & Amelung, F. (2015). InSAR bias and uncertainty due to the systematic and stochastic tropospheric delay. _Journal of Geophysical Research: Solid Earth, 120_(12), 8758-8773. doi:[10.1002/2015JB012419](https://doi.org/10.1002/2015JB012419)

+ Jolivet, R., P. S. Agram, N. Y. Lin, M. Simons, M. P. Doin, G. Peltzer, and Z. Li (2014), Improving InSAR geodesy using global atmospheric models, _Journal of Geophysical Research: Solid Earth, 119_(3), 2324-2341, doi:10.1002/2013JB010588.
+ Fattahi, H., Agram, P., & Simons, M. (2016). A Network-Based Enhanced Spectral Diversity Approach for TOPS Time-Series Analysis. _IEEE Transactions on Geoscience and Remote Sensing, 55_(2), 777-786. doi:[10.1109/TGRS.2016.2614925](https://doi.org/10.1109/TGRS.2016.2614925)

+ Marinkovic, P., and Y. Larsen (2013), Consequences of long-term ASAR local oscillator frequency decay - An empirical study of 10 years of data, paper presented at _Proceedings of the Living Planet Symposium_ (abstract), European Space Agency, Edinburgh, U. K.
+ Fattahi, H., Simons, M., & Agram, P. (2017). InSAR Time-Series Estimation of the Ionospheric Phase Delay: An Extension of the Split Range-Spectrum Technique. _IEEE Transactions on Geoscience and Remote Sensing, 55_(10), 5984-5996. doi:[10.1109/TGRS.2017.2718566](https://doi.org/10.1109/TGRS.2017.2718566)

+ Morales Rivera, A. M., F. Amelung, and P. Mothes (2016), Volcano Deformation Survey over the Northern and Central Andes with ALOS InSAR Time Series, _Geochemistry, Geophysics, Geosystems_, 17, 2869-2883, doi:10.1002/2016GC006393.
+ Gomba, G., Parizzi, A., Zan, F. D., Eineder, M., & Bamler, R. (2016). Toward Operational Compensation of Ionospheric Effects in SAR Interferograms: The Split-Spectrum Method. _IEEE Transactions on Geoscience and Remote Sensing, 54_(3), 1446-1461. doi:[10.1109/TGRS.2015.2481079](https://doi.org/10.1109/TGRS.2015.2481079)

+ Pepe, A., and R. Lanari (2006), On the extension of the minimum cost flow algorithm for phase unwrapping of multitemporal differential SAR interferograms, _Geoscience and Remote Sensing, IEEE Transactions on, 44_(9), 2374-2383, doi:10.1109/TGRS.2006.873207.
+ Heflin, M., Donnellan, A., Parker, J., Lyzenga, G., Moore, A., Ludwig, L. G., et al. (2020). Automated Estimation and Tools to Extract Positions, Velocities, Breaks, and Seasonal Terms From Daily GNSS Measurements: Illuminating Nonlinear Salton Trough Deformation. _Earth and Space Scien10.1029/2011JB008731ce, 7_(7), e2019EA000644, doi:[10.1029/2019EA000644](https://doi.org/10.1029/2019EA000644)

+ Perissin, D., and T. Wang (2012), Repeat-pass SAR interferometry with partially coherent targets, _Geoscience and Remote Sensing, IEEE Transactions on, 50_(1), 271-280, doi:10.1109/tgrs.2011.2160644.
+ Hetland, E., Musé, P., Simons, M., Lin, Y., Agram, P., & DiCaprio, C. (2012). Multiscale InSAR time series (MInTS) analysis of surface deformation. _Journal of Geophysical Research: Solid Earth, 117_(B2). doi:[10.1029/2011JB008731](https://doi.org/10.1029/2011JB008731)

+ Rosen, P. A., S. Hensley, G. Peltzer, and M. Simons (2004), Updated repeat orbit interferometry package released, _Eos Trans. AGU, 85_(5), 47-47, doi:10.1029/2004EO050004.
+ Jolivet, R., Grandin, R., Lasserre, C., Doin, M. P., & Peltzer, G. (2011). Systematic InSAR tropospheric phase delay corrections from global meteorological reanalysis data. _Geophysical Research Letters, 38_(17), L17311. doi:[10.1029/2011GL048757](https://doi.org/10.1029/2011GL048757)

+ Rosen, P. A., E. Gurrola, G. F. Sacco, and H. Zebker (2012), The InSAR scientific computing environment, paper presented at _EUSAR 2012_, 23-26 April 2012.
+ Jolivet, R., Agram, P. S., Lin, N. Y., Simons, M., Doin, M. P., Peltzer, G., & Li, Z. (2014). Improving InSAR geodesy using global atmospheric models. _Journal of Geophysical Research: Solid Earth, 119_(3), 2324-2341. doi:[10.1002/2013JB010588](https://doi.org/10.1002/2013JB010588)

+ Tough, R. J. A., D. Blacknell, and S. Quegan (1995), A Statistical Description of Polarimetric and Interferometric Synthetic Aperture Radar Data, _Proceedings: Mathematical and Physical Sciences, 449_(1937), 567-589, doi:10.1098/rspa.1995.0059.
+ Kang, Y., Lu, Z., Zhao, C., Xu, Y., Kim, J.-w., & Gallegos, A. J. (2021). InSAR monitoring of creeping landslides in mountainous regions: A case study in Eldorado National Forest, California. _Remote Sensing of Environment, 258_, 112400. doi:[10.1016/j.rse.2021.112400](https://doi.org/10.1016/j.rse.2021.112400)

+ Werner, C., U. Wegmüller, T. Strozzi, and A. Wiesmann (2000), Gamma SAR and interferometric processing software, paper presented at _Proceedings of the ERS-Envisat symposium_, Gothenburg, Sweden.
+ Liang, C., Liu, Z., Fielding, E. J., & Bürgmann, R. (2018). InSAR Time Series Analysis of L-Band Wide-Swath SAR Data Acquired by ALOS-2. _IEEE Transactions on Geoscience and Remote Sensing, 56_(8), 4492-4506. doi:[10.1109/TGRS.2018.2821150](https://doi.org/10.1109/TGRS.2018.2821150)

+ Yu, C., Z. Li, and N. T. Penna (2018), Interferometric synthetic aperture radar atmospheric correction using a GPS-based iterative tropospheric decomposition model, Remote Sensing of Environment, 204, 109-121, doi:10.1016/j.rse.2017.10.038.
+ Liang, C., Agram, P., Simons, M., & Fielding, E. J. (2019). Ionospheric Correction of InSAR Time Series Analysis of C-band Sentinel-1 TOPS Data. _IEEE Transactions on Geoscience and Remote Sensing, 59_(9), 6755 - 6773. doi:[10.1109/TGRS.2019.2908494](https://doi.org/10.1109/TGRS.2019.2908494)

+ Yu, C., Z. Li, N. T. Penna, and P. Crippa (2018), Generic Atmospheric Correction Model for Interferometric Synthetic Aperture Radar Observations, Journal of Geophysical Research: Solid Earth, 123(10), 9202-9222, doi:10.1029/2017JB015305.
+ Marinkovic, P., & Larsen, Y. (2013). Consequences of long-term ASAR local oscillator frequency decay - An empirical study of 10 years of data. Paper presented at _Proceedings of the Living Planet Symposium_ (abstract), European Space Agency, Edinburgh, UK.

+ Yunjun, Z., H. Fattahi, and F. Amelung (2019), Small baseline InSAR time series analysis: Unwrapping error correction and noise reduction, _Computers & Geosciences, 133_, 104331, doi:10.1016/j.cageo.2019.104331.
+ Milbert, D. (2018), "solid: Solid Earth Tide", [Online]. Available: http://geodesyworld.github.io/SOFTS/solid.htm. Accessd on: 2020-09-06.

+ Zebker, H. A., P. A. Rosen, and S. Hensley (1997), Atmospheric effects in interferometric synthetic aperture radar surface deformation and topographic maps, _Journal of Geophysical Research: Solid Earth, 102_(B4), 7547-7563, doi:10.1029/96JB03804.
+ Morales Rivera, A. M., Amelung, F., & Mothes, P. (2016). Volcano Deformation Survey over the Northern and Central Andes with ALOS InSAR Time Series. _Geochemistry, Geophysics, Geosystems, 17_, 2869-2883. doi:[10.1002/2016GC006393](https://doi.org/10.1002/2016GC006393)

+ Pepe, A., & Lanari, R. (2006). On the extension of the minimum cost flow algorithm for phase unwrapping of multitemporal differential SAR interferograms. _IEEE Transactions on Geoscience and Remote Sensing, 44_(9), 2374-2383. doi:[10.1109/TGRS.2006.873207](https://doi.org/10.1109/TGRS.2006.873207)

+ Perissin, D., & Wang, T. (2012). Repeat-pass SAR interferometry with partially coherent targets. _IEEE Transactions on Geoscience and Remote Sensing, 50_(1), 271-280. doi:[10.1109/tgrs.2011.2160644](https://doi.org/10.1109/tgrs.2011.2160644)

+ Rosen, P. A., Hensley, S., Peltzer, G., & Simons, M. (2004). Updated repeat orbit interferometry package released. _Eos Trans. AGU, 85_(5), 47-47. doi:[10.1029/2004EO050004](https://doi.org/10.1029/2004EO050004)

+ Rosen, P. A., Gurrola, E., Sacco, G. F. & Zebker, H. (2012). The InSAR scientific computing environment. Paper presented at _EUSAR 2012_, Nuremberg, Germany.

+ Seymour, M. S., & Cumming, I. G. (1994). Maximum likelihood estimation for SAR interferometry. Paper presented at the _Proceedings of IGARSS '94 - 1994 IEEE International Geoscience and Remote Sensing Symposium_. doi:[10.1109/IGARSS.1994.399711](https://doi.org/10.1109/IGARSS.1994.399711)

+ Tough, R. J. A., Blacknell, D., & Quegan, S. (1995). A Statistical Description of Polarimetric and Interferometric Synthetic Aperture Radar Data. _Proceedings: Mathematical and Physical Sciences, 449_(1937), 567-589. doi:[10.1098/rspa.1995.0059](https://doi.org/10.1098/rspa.1995.0059)

+ Werner, C., Wegmüller, U., Strozzi, T., & Wiesmann, A. (2000). Gamma SAR and interferometric processing software. Paper presented at the _Proceedings of the ERS-Envisat symposium_, Gothenburg, Sweden.

+ Yu, C., Li, Z., Penna, N. T., & Crippa, P. (2018). Generic Atmospheric Correction Model for Interferometric Synthetic Aperture Radar Observations. _Journal of Geophysical Research: Solid Earth, 123_(10), 9202-9222. doi:[10.1029/2017JB015305](https://doi.org/10.1029/2017JB015305)

+ Yunjun, Z., Fattahi, H., & Amelung, F. (2019). Small baseline InSAR time series analysis: Unwrapping error correction and noise reduction. _Computers & Geosciences, 133_, 104331. doi:[10.1016/j.cageo.2019.104331](https://doi.org/10.1016/j.cageo.2019.104331)

+ Yunjun, Z., Fattahi, H., Pi, X., Rosen, P., Simons, M., Agram, P., & Aoki, Y. (2022). Range Geolocation Accuracy of C-/L-Band SAR and its Implications for Operational Stack Coregistration. IEEE Transactions on Geoscience and Remote Sensing, 60, 5227219. doi:[10.1109/TGRS.2022.3168509](https://doi.org/10.1109/TGRS.2022.3168509)

+ Zebker, H. A., Rosen, P. A., & Hensley, S. (1997). Atmospheric effects in interferometric synthetic aperture radar surface deformation and topographic maps. _Journal of Geophysical Research: Solid Earth, 102_(B4), 7547-7563. doi:[10.1029/96JB03804](https://doi.org/10.1029/96JB03804)
43 changes: 28 additions & 15 deletions src/mintpy/objects/gnss.py
Original file line number Diff line number Diff line change
Expand Up @@ -21,10 +21,10 @@
from mintpy.utils import ptime, readfile, time_func, utils1 as ut

GNSS_SITE_LIST_URLS = {
'UNR' : 'http://geodesy.unr.edu/NGLStationPages/DataHoldings.txt',
'ESESES' : 'http://garner.ucsd.edu/pub/measuresESESES_products/Velocities/ESESES_Velocities.txt',
'JPL-SIDESHOW' : 'https://sideshow.jpl.nasa.gov/post/tables/table2.html',
'GENERIC' : None,
'UNR' : 'http://geodesy.unr.edu/NGLStationPages/DataHoldings.txt',
'ESESES' : 'http://garner.ucsd.edu/pub/measuresESESES_products/Velocities/ESESES_Velocities.txt',
'SIDESHOW' : 'https://sideshow.jpl.nasa.gov/post/tables/table2.html',
'GENERIC' : None,
}
GNSS_SOURCES = list(GNSS_SITE_LIST_URLS.keys())

Expand Down Expand Up @@ -64,8 +64,8 @@ def search_gnss(SNWE, start_date=None, end_date=None, source='UNR', site_list_fi
sites = read_UNR_site_list(site_list_file)
elif source == 'ESESES':
sites = read_ESESES_site_list(site_list_file)
elif source == 'JPL-SIDESHOW':
sites = read_JPL_SIDESHOW_site_list(site_list_file)
elif source == 'SIDESHOW':
sites = read_SIDESHOW_site_list(site_list_file)
elif source == 'GENERIC':
sites = read_GENERIC_site_list(site_list_file)

Expand Down Expand Up @@ -143,7 +143,7 @@ def read_UNR_site_list(site_list_file:str):


def read_ESESES_site_list(site_list_file:str):
"""Return names and lon/lat values for JPL GNSS stations.
"""Return names and lon/lat values for JPL/SOPAC ESESES GNSS stations.
"""
fc = np.loadtxt(site_list_file, skiprows=17, dtype=str)
sites = {
Expand All @@ -154,8 +154,8 @@ def read_ESESES_site_list(site_list_file:str):
return sites


def read_JPL_SIDESHOW_site_list(site_list_file:str):
"""Return names and lon/lat values for JPL-SIDESHOW GNSS stations.
def read_SIDESHOW_site_list(site_list_file:str):
"""Return names and lon/lat values for JPL SIDESHOW GNSS stations.
"""
fc = np.loadtxt(site_list_file, comments='<', skiprows=9, dtype=str)
sites = {
Expand Down Expand Up @@ -348,8 +348,8 @@ def get_gnss_class(source:str):
return GNSS_UNR
elif source == 'ESESES':
return GNSS_ESESES
elif source == 'JPL-SIDESHOW':
return GNSS_JPL_SIDESHOW
elif source == 'SIDESHOW':
return GNSS_SIDESHOW
elif source == 'GENERIC':
return GNSS_GENERIC
else:
Expand Down Expand Up @@ -791,6 +791,11 @@ class GNSS_UNR(GNSS):
at University of Nevada, Reno (UNR).

Website: http://geodesy.unr.edu/NGLStationPages/GlobalStationList

Reference:
Blewitt, G., Hammond, W., & Kreemer, C. (2018). Harnessing the GPS data
explosion for interdisciplinary science. Eos, 99. doi:10.1029/2018EO104623

"""
def __init__(self, site: str, data_dir=None, version='IGS14', url_prefix=None):
super().__init__(
Expand Down Expand Up @@ -1037,17 +1042,25 @@ def read_displacement(self, start_date=None, end_date=None, print_msg=True, disp
self.std_e, self.std_n, self.std_u)


class GNSS_JPL_SIDESHOW(GNSS):
"""GNSS class for daily solutions processed by JPL-SIDESHOW.
class GNSS_SIDESHOW(GNSS):
"""GNSS class for daily solutions processed by JPL SIDESHOW,
funded by NASA's Space Geodesy Task.

Website: https://sideshow.jpl.nasa.gov/pub/
https://sideshow.jpl.nasa.gov/post/series.html

Reference:
Heflin, M., Donnellan, A., Parker, J., Lyzenga, G., Moore, A., Ludwig, L. G., et al.
(2020). Automated Estimation and Tools to Extract Positions, Velocities, Breaks, and
Seasonal Terms From Daily GNSS Measurements: Illuminating Nonlinear Salton Trough
Deformation. Earth and Space Science, 7(7), e2019EA000644, doi:10.1029/2019EA000644
"""
def __init__(self, site: str, data_dir=None, version='IGS14', url_prefix=None):
super().__init__(
site=site,
data_dir=data_dir,
version=version,
source='JPL-SIDESHOW',
source='SIDESHOW',
url_prefix=url_prefix,
)

Expand All @@ -1068,7 +1081,7 @@ def get_site_lat_lon(self, print_msg=False) -> (float, float):
Returns: self.lat/lon - float
"""
# need to refer to the site list
site_list_file = os.path.basename(GNSS_SITE_LIST_URLS['JPL-SIDESHOW'])
site_list_file = os.path.basename(GNSS_SITE_LIST_URLS['SIDESHOW'])

# find site in site list file
with open(site_list_file) as site_list:
Expand Down
Loading