Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

np.NaN -> np.nan for numpy 2.0 support #870

Merged
merged 1 commit into from
Oct 21, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion ibllib/io/extractors/fibrephotometry.py
Original file line number Diff line number Diff line change
Expand Up @@ -225,7 +225,7 @@ def _extract(self, light_source_map=None, collection=None, regions=None, **kwarg
regions = regions or [k for k in fp_data['raw'].keys() if 'Region' in k]
out_df = fp_data['raw'].filter(items=regions, axis=1).sort_index(axis=1)
out_df['times'] = ts
out_df['wavelength'] = np.NaN
out_df['wavelength'] = np.nan
out_df['name'] = ''
out_df['color'] = ''
# Extract channel index
Expand Down
8 changes: 4 additions & 4 deletions ibllib/io/extractors/opto_trials.py
Original file line number Diff line number Diff line change
Expand Up @@ -16,8 +16,8 @@ class LaserBool(BaseBpodTrialsExtractor):
def _extract(self, **kwargs):
_logger.info('Extracting laser datasets')
# reference pybpod implementation
lstim = np.array([float(t.get('laser_stimulation', np.NaN)) for t in self.bpod_trials])
lprob = np.array([float(t.get('laser_probability', np.NaN)) for t in self.bpod_trials])
lstim = np.array([float(t.get('laser_stimulation', np.nan)) for t in self.bpod_trials])
lprob = np.array([float(t.get('laser_probability', np.nan)) for t in self.bpod_trials])

# Karolina's choice world legacy implementation - from Slack message:
# it is possible that some versions I have used:
Expand All @@ -30,9 +30,9 @@ def _extract(self, **kwargs):
# laserOFF_trials=(optoOUT ==0);
if 'PROBABILITY_OPTO' in self.settings.keys() and np.all(np.isnan(lstim)):
lprob = np.zeros_like(lprob) + self.settings['PROBABILITY_OPTO']
lstim = np.array([float(t.get('opto_ON_time', np.NaN)) for t in self.bpod_trials])
lstim = np.array([float(t.get('opto_ON_time', np.nan)) for t in self.bpod_trials])
if np.all(np.isnan(lstim)):
lstim = np.array([float(t.get('optoOUT', np.NaN)) for t in self.bpod_trials])
lstim = np.array([float(t.get('optoOUT', np.nan)) for t in self.bpod_trials])
lstim[lstim == 255] = 1
else:
lstim[~np.isnan(lstim)] = 1
Expand Down
2 changes: 1 addition & 1 deletion ibllib/io/extractors/training_trials.py
Original file line number Diff line number Diff line change
Expand Up @@ -32,7 +32,7 @@ def _extract(self):
feedbackType = np.zeros(len(self.bpod_trials), np.int64)
for i, t in enumerate(self.bpod_trials):
state_names = ['correct', 'error', 'no_go', 'omit_correct', 'omit_error', 'omit_no_go']
outcome = {sn: ~np.isnan(t['behavior_data']['States timestamps'].get(sn, [[np.NaN]])[0][0]) for sn in state_names}
outcome = {sn: ~np.isnan(t['behavior_data']['States timestamps'].get(sn, [[np.nan]])[0][0]) for sn in state_names}
assert np.sum(list(outcome.values())) == 1
outcome = next(k for k in outcome if outcome[k])
if outcome == 'correct':
Expand Down
2 changes: 1 addition & 1 deletion ibllib/qc/base.py
Original file line number Diff line number Diff line change
Expand Up @@ -85,7 +85,7 @@ def overall_outcome(outcomes: iter, agg=max) -> spec.QC:
one.alf.spec.QC
The overall outcome.
"""
outcomes = filter(lambda x: x not in (None, np.NaN), outcomes)
outcomes = filter(lambda x: x not in (None, np.nan), outcomes)
return agg(map(spec.QC.validate, outcomes))

def _set_eid_or_path(self, session_path_or_eid):
Expand Down
2 changes: 1 addition & 1 deletion ibllib/qc/task_metrics.py
Original file line number Diff line number Diff line change
Expand Up @@ -512,7 +512,7 @@ def compute(self, **kwargs):
iti = (np.roll(data['stimOn_times'], -1) - data['stimOff_times'])[:-1]
metric = np.r_[np.nan_to_num(iti, nan=np.inf), np.nan] - 1.
passed[check] = np.abs(metric) <= 0.1
passed[check][-1] = np.NaN
passed[check][-1] = np.nan
metrics[check] = metric

# Checks common to training QC
Expand Down
Loading