-
Notifications
You must be signed in to change notification settings - Fork 653
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[LLVMGPU] Add initial kernel config for horizontally fused gemms.
This is in preparation of the modified way of generating horizontally fused GEMMs. This PR adds kernel configuration for these GEMM ops to allow them to go down the vector distribute pipeline. Signed-off-by: MaheshRavishankar <[email protected]>
- Loading branch information
1 parent
f3bef2d
commit 1a6e5f7
Showing
8 changed files
with
486 additions
and
2 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
283 changes: 283 additions & 0 deletions
283
compiler/src/iree/compiler/Codegen/LLVMGPU/test/config_horizontally_fused_ops.mlir
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,283 @@ | ||
// RUN: iree-opt --split-input-file --iree-gpu-test-target=gfx942 --pass-pipeline='builtin.module(iree-llvmgpu-select-lowering-strategy)' --mlir-print-local-scope %s | FileCheck %s | ||
|
||
func.func @fused_contraction_1(%arg0: tensor<2x4096x640xf16>, | ||
%arg1 : tensor<10x64x640xf16>, %arg2 : tensor<10x64x640xf16>, | ||
%arg3 : tensor<10x64x640xf16>) | ||
-> (tensor<2x10x4096x64xf16>, tensor<2x10x4096x64xf16>, tensor<2x10x4096x64xf16>) { | ||
%11 = tensor.empty() : tensor<2x10x4096x64xf16> | ||
%12 = tensor.empty() : tensor<2x10x4096x64xf32> | ||
%cst = arith.constant 0.0: f32 | ||
%13 = linalg.fill ins(%cst : f32) | ||
outs(%12 : tensor<2x10x4096x64xf32>) -> tensor<2x10x4096x64xf32> | ||
%14:3 = linalg.generic { | ||
indexing_maps = [affine_map<(d0, d1, d2, d3, d4) -> (d0, d2, d4)>, | ||
affine_map<(d0, d1, d2, d3, d4) -> (d1, d3, d4)>, | ||
affine_map<(d0, d1, d2, d3, d4) -> (d1, d3, d4)>, | ||
affine_map<(d0, d1, d2, d3, d4) -> (d1, d3, d4)>, | ||
affine_map<(d0, d1, d2, d3, d4) -> (d0, d1, d2, d3)>, | ||
affine_map<(d0, d1, d2, d3, d4) -> (d0, d1, d2, d3)>, | ||
affine_map<(d0, d1, d2, d3, d4) -> (d0, d1, d2, d3)>], | ||
iterator_types = ["parallel", "parallel", "parallel", "parallel", "reduction"]} | ||
ins(%arg0, %arg1, %arg2, %arg3 | ||
: tensor<2x4096x640xf16>, tensor<10x64x640xf16>, tensor<10x64x640xf16>, | ||
tensor<10x64x640xf16>) | ||
outs(%13, %13, %13 | ||
: tensor<2x10x4096x64xf32>, tensor<2x10x4096x64xf32>, tensor<2x10x4096x64xf32>) { | ||
^bb0(%in: f16, %in_0: f16, %in_1: f16, %in_2: f16, %out: f32, %out_3: f32, %out_4: f32): | ||
%18 = arith.extf %in : f16 to f32 | ||
%19 = arith.extf %in_0 : f16 to f32 | ||
%20 = arith.mulf %18, %19 : f32 | ||
%21 = arith.addf %out, %20 : f32 | ||
%22 = arith.extf %in_1 : f16 to f32 | ||
%23 = arith.mulf %18, %22 : f32 | ||
%24 = arith.addf %out_3, %23 : f32 | ||
%25 = arith.extf %in_2 : f16 to f32 | ||
%26 = arith.mulf %18, %25 : f32 | ||
%27 = arith.addf %out_4, %26 : f32 | ||
linalg.yield %21, %24, %27 : f32, f32, f32 | ||
} -> (tensor<2x10x4096x64xf32>, tensor<2x10x4096x64xf32>, tensor<2x10x4096x64xf32>) | ||
%15 = linalg.generic { | ||
indexing_maps = [affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)>, | ||
affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)>], | ||
iterator_types = ["parallel", "parallel", "parallel", "parallel"]} | ||
ins(%14#0 : tensor<2x10x4096x64xf32>) outs(%11 : tensor<2x10x4096x64xf16>) { | ||
^bb0(%in: f32, %out: f16): | ||
%18 = arith.truncf %in : f32 to f16 | ||
linalg.yield %18 : f16 | ||
} -> tensor<2x10x4096x64xf16> | ||
%16 = linalg.generic { | ||
indexing_maps = [affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)>, | ||
affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)>], | ||
iterator_types = ["parallel", "parallel", "parallel", "parallel"]} | ||
ins(%14#1 : tensor<2x10x4096x64xf32>) outs(%11 : tensor<2x10x4096x64xf16>) { | ||
^bb0(%in: f32, %out: f16): | ||
%18 = arith.truncf %in : f32 to f16 | ||
linalg.yield %18 : f16 | ||
} -> tensor<2x10x4096x64xf16> | ||
%17 = linalg.generic { | ||
indexing_maps = [affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)>, | ||
affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)>], | ||
iterator_types = ["parallel", "parallel", "parallel", "parallel"]} | ||
ins(%14#2 : tensor<2x10x4096x64xf32>) outs(%11 : tensor<2x10x4096x64xf16>) { | ||
^bb0(%in: f32, %out: f16): | ||
%18 = arith.truncf %in : f32 to f16 | ||
linalg.yield %18 : f16 | ||
} -> tensor<2x10x4096x64xf16> | ||
return %15, %16, %17 | ||
: tensor<2x10x4096x64xf16>, tensor<2x10x4096x64xf16>, tensor<2x10x4096x64xf16> | ||
} | ||
// CHECK-LABEL: func @fused_contraction_1 | ||
// CHECK-SAME: translation_info = #iree_codegen.translation_info | ||
// CHECK-SAME: pipeline = LLVMGPUVectorDistribute | ||
// CHECK-SAME: workgroup_size = [256, 1, 1] | ||
// CHECK-SAME: subgroup_size = 64 | ||
// CHECK: %[[GENERIC:.+]]:3 = linalg.generic | ||
// CHECK-SAME: lowering_config = #iree_gpu.lowering_config | ||
// CHECK-SAME: mma_kind = #iree_gpu.mma_layout<MFMA_F32_16x16x16_F16 | ||
// CHECK-SAME: promote_operands = [0, 1, 2, 3] | ||
// CHECK-SAME: reduction = [0, 0, 0, 0, 128] | ||
// CHECK-SAME: subgroup_m_count = 2 | ||
// CHECK-SAME: subgroup_n_count = 2 | ||
// CHECK-SAME: workgroup = [1, 1, 32, 32, 0] | ||
|
||
// ----- | ||
|
||
func.func @fused_contraction_2(%arg0: tensor<4096x640xf32>, | ||
%arg1 : tensor<640x640xf32>, %arg2 : tensor<640x640xf32>, | ||
%arg3 : tensor<640x640xf32>) | ||
-> (tensor<4096x640xf32>, tensor<4096x640xf32>, tensor<4096x640xf32>) { | ||
%11 = tensor.empty() : tensor<4096x640xf32> | ||
%12 = tensor.empty() : tensor<4096x640xf32> | ||
%cst = arith.constant 0.0: f32 | ||
%13 = linalg.fill ins(%cst : f32) | ||
outs(%12 : tensor<4096x640xf32>) -> tensor<4096x640xf32> | ||
%14:3 = linalg.generic { | ||
indexing_maps = [affine_map<(d0, d1, d2) -> (d0, d2)>, | ||
affine_map<(d0, d1, d2) -> (d2, d1)>, | ||
affine_map<(d0, d1, d2) -> (d2, d1)>, | ||
affine_map<(d0, d1, d2) -> (d2, d1)>, | ||
affine_map<(d0, d1, d2) -> (d0, d1)>, | ||
affine_map<(d0, d1, d2) -> (d0, d1)>, | ||
affine_map<(d0, d1, d2) -> (d0, d1)>], | ||
iterator_types = ["parallel", "parallel", "reduction"]} | ||
ins(%arg0, %arg1, %arg2, %arg3 | ||
: tensor<4096x640xf32>, tensor<640x640xf32>, tensor<640x640xf32>, | ||
tensor<640x640xf32>) | ||
outs(%13, %13, %13 | ||
: tensor<4096x640xf32>, tensor<4096x640xf32>, tensor<4096x640xf32>) { | ||
^bb0(%in: f32, %in_0: f32, %in_1: f32, %in_2: f32, %out: f32, %out_3: f32, %out_4: f32): | ||
%20 = arith.mulf %in, %in_0 : f32 | ||
%21 = arith.addf %out, %20 : f32 | ||
%23 = arith.mulf %in, %in_1 : f32 | ||
%24 = arith.addf %out_3, %23 : f32 | ||
%26 = arith.mulf %in, %in_2 : f32 | ||
%27 = arith.addf %out_4, %26 : f32 | ||
linalg.yield %21, %24, %27 : f32, f32, f32 | ||
} -> (tensor<4096x640xf32>, tensor<4096x640xf32>, tensor<4096x640xf32>) | ||
return %14#0, %14#1, %14#2 | ||
: tensor<4096x640xf32>, tensor<4096x640xf32>, tensor<4096x640xf32> | ||
} | ||
// CHECK-LABEL: func @fused_contraction_2 | ||
// CHECK-SAME: translation_info = #iree_codegen.translation_info | ||
// CHECK-SAME: pipeline = LLVMGPUVectorDistribute | ||
// CHECK-SAME: workgroup_size = [256, 1, 1] | ||
// CHECK-SAME: subgroup_size = 64 | ||
// CHECK: %[[GENERIC:.+]]:3 = linalg.generic | ||
// CHECK-SAME: lowering_config = #iree_gpu.lowering_config | ||
// CHECK-SAME: mma_kind = #iree_gpu.mma_layout<MFMA_F32_16x16x4_F32 | ||
// CHECK-SAME: promote_operands = [0, 1, 2, 3] | ||
// CHECK-SAME: reduction = [0, 0, 16] | ||
// CHECK-SAME: subgroup_m_count = 2 | ||
// CHECK-SAME: subgroup_n_count = 2 | ||
// CHECK-SAME: workgroup = [32, 64, 0] | ||
|
||
// ----- | ||
|
||
func.func @fused_contraction_3(%arg0 : tensor<2x4096x640xi8>, | ||
%arg1 : tensor<2x640x640xi8>, %arg2 : tensor<2x640x640xi8>) | ||
-> (tensor<2x4096x640xf16>, tensor<2x4096x640xf16>) { | ||
%c0_i32 = arith.constant 0 : i32 | ||
%18 = tensor.empty() : tensor<2x4096x640xf16> | ||
%19 = tensor.empty() : tensor<2x4096x640xi32> | ||
%20 = linalg.fill ins(%c0_i32 : i32) | ||
outs(%19 : tensor<2x4096x640xi32>) -> tensor<2x4096x640xi32> | ||
%21:2 = linalg.generic { | ||
indexing_maps = [affine_map<(d0, d1, d2, d3) -> (d0, d1, d3)>, | ||
affine_map<(d0, d1, d2, d3) -> (d0, d2, d3)>, | ||
affine_map<(d0, d1, d2, d3) -> (d0, d2, d3)>, | ||
affine_map<(d0, d1, d2, d3) -> (d0, d1, d2)>, | ||
affine_map<(d0, d1, d2, d3) -> (d0, d1, d2)>], | ||
iterator_types = ["parallel", "parallel", "parallel", "reduction"]} | ||
ins(%arg0, %arg1, %arg2 : tensor<2x4096x640xi8>, tensor<2x640x640xi8>, tensor<2x640x640xi8>) | ||
outs(%20, %20 : tensor<2x4096x640xi32>, tensor<2x4096x640xi32>) { | ||
^bb0(%in: i8, %in_0: i8, %in_1: i8, %out: i32, %out_2: i32): | ||
%24 = arith.extsi %in : i8 to i32 | ||
%25 = arith.extsi %in_0 : i8 to i32 | ||
%26 = arith.muli %24, %25 : i32 | ||
%27 = arith.addi %out, %26 : i32 | ||
%28 = arith.extsi %in_1 : i8 to i32 | ||
%29 = arith.muli %24, %28 : i32 | ||
%30 = arith.addi %out_2, %29 : i32 | ||
linalg.yield %27, %30 : i32, i32 | ||
} -> (tensor<2x4096x640xi32>, tensor<2x4096x640xi32>) | ||
%22 = linalg.generic { | ||
indexing_maps = [affine_map<(d0, d1, d2) -> (d0, d1, d2)>, | ||
affine_map<(d0, d1, d2) -> (d0, d1, d2)>], | ||
iterator_types = ["parallel", "parallel", "parallel"]} | ||
ins(%21#0 : tensor<2x4096x640xi32>) outs(%18 : tensor<2x4096x640xf16>) { | ||
^bb0(%in: i32, %out: f16): | ||
%27 = arith.sitofp %in : i32 to f32 | ||
%29 = arith.truncf %27 : f32 to f16 | ||
linalg.yield %29 : f16 | ||
} -> tensor<2x4096x640xf16> | ||
%23 = linalg.generic { | ||
indexing_maps = [affine_map<(d0, d1, d2) -> (d0, d1, d2)>, | ||
affine_map<(d0, d1, d2) -> (d0, d1, d2)>], | ||
iterator_types = ["parallel", "parallel", "parallel"]} | ||
ins(%21#1 : tensor<2x4096x640xi32>) outs(%18 : tensor<2x4096x640xf16>) { | ||
^bb0(%in: i32, %out: f16): | ||
%27 = arith.sitofp %in : i32 to f32 | ||
%29 = arith.truncf %27 : f32 to f16 | ||
linalg.yield %29 : f16 | ||
} -> tensor<2x4096x640xf16> | ||
return %22, %23 : tensor<2x4096x640xf16>, tensor<2x4096x640xf16> | ||
} | ||
// CHECK-LABEL: func @fused_contraction_3 | ||
// CHECK-SAME: translation_info = #iree_codegen.translation_info | ||
// CHECK-SAME: pipeline = LLVMGPUVectorDistribute | ||
// CHECK-SAME: workgroup_size = [256, 1, 1] | ||
// CHECK-SAME: subgroup_size = 64 | ||
// CHECK: %[[GENERIC:.+]]:2 = linalg.generic | ||
// CHECK-SAME: lowering_config = #iree_gpu.lowering_config | ||
// CHECK-SAME: mma_kind = #iree_gpu.mma_layout<MFMA_I32_16x16x32_I8 | ||
// CHECK-SAME: promote_operands = [0, 1, 2] | ||
// CHECK-SAME: reduction = [0, 0, 0, 128] | ||
// CHECK-SAME: subgroup_m_count = 2 | ||
// CHECK-SAME: subgroup_n_count = 2 | ||
// CHECK-SAME: workgroup = [1, 64, 64, 0] | ||
|
||
// ----- | ||
|
||
func.func @fused_contraction_4(%arg0: tensor<2x4096x640xf16>, | ||
%arg1 : tensor<10x64x640xf16>, %arg2 : tensor<10x64x640xf16>, | ||
%arg3 : tensor<10x64x640xf16>) | ||
-> (tensor<2x10x4096x64xf16>, tensor<2x10x4096x64xf16>, tensor<2x10x64x4096xf16>) { | ||
%9 = tensor.empty() : tensor<2x10x64x4096xf16> | ||
%10 = tensor.empty() : tensor<2x10x64x4096xf32> | ||
%11 = tensor.empty() : tensor<2x10x4096x64xf16> | ||
%12 = tensor.empty() : tensor<2x10x4096x64xf32> | ||
%cst = arith.constant 0.0: f32 | ||
%fill0 = linalg.fill ins(%cst : f32) | ||
outs(%12 : tensor<2x10x4096x64xf32>) -> tensor<2x10x4096x64xf32> | ||
%fill1 = linalg.fill ins(%cst : f32) | ||
outs(%10 : tensor<2x10x64x4096xf32>) -> tensor<2x10x64x4096xf32> | ||
%14:3 = linalg.generic { | ||
indexing_maps = [affine_map<(d0, d1, d2, d3, d4) -> (d0, d2, d4)>, | ||
affine_map<(d0, d1, d2, d3, d4) -> (d1, d3, d4)>, | ||
affine_map<(d0, d1, d2, d3, d4) -> (d1, d3, d4)>, | ||
affine_map<(d0, d1, d2, d3, d4) -> (d1, d3, d4)>, | ||
affine_map<(d0, d1, d2, d3, d4) -> (d0, d1, d2, d3)>, | ||
affine_map<(d0, d1, d2, d3, d4) -> (d0, d1, d2, d3)>, | ||
affine_map<(d0, d1, d2, d3, d4) -> (d0, d1, d3, d2)>], | ||
iterator_types = ["parallel", "parallel", "parallel", "parallel", "reduction"]} | ||
ins(%arg0, %arg1, %arg2, %arg3 | ||
: tensor<2x4096x640xf16>, tensor<10x64x640xf16>, tensor<10x64x640xf16>, | ||
tensor<10x64x640xf16>) | ||
outs(%fill0, %fill0, %fill1 | ||
: tensor<2x10x4096x64xf32>, tensor<2x10x4096x64xf32>, tensor<2x10x64x4096xf32>) { | ||
^bb0(%in: f16, %in_0: f16, %in_1: f16, %in_2: f16, %out: f32, %out_3: f32, %out_4: f32): | ||
%18 = arith.extf %in : f16 to f32 | ||
%19 = arith.extf %in_0 : f16 to f32 | ||
%20 = arith.mulf %18, %19 : f32 | ||
%21 = arith.addf %out, %20 : f32 | ||
%22 = arith.extf %in_1 : f16 to f32 | ||
%23 = arith.mulf %18, %22 : f32 | ||
%24 = arith.addf %out_3, %23 : f32 | ||
%25 = arith.extf %in_2 : f16 to f32 | ||
%26 = arith.mulf %18, %25 : f32 | ||
%27 = arith.addf %out_4, %26 : f32 | ||
linalg.yield %21, %24, %27 : f32, f32, f32 | ||
} -> (tensor<2x10x4096x64xf32>, tensor<2x10x4096x64xf32>, tensor<2x10x64x4096xf32>) | ||
%15 = linalg.generic { | ||
indexing_maps = [affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)>, | ||
affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)>], | ||
iterator_types = ["parallel", "parallel", "parallel", "parallel"]} | ||
ins(%14#0 : tensor<2x10x4096x64xf32>) outs(%11 : tensor<2x10x4096x64xf16>) { | ||
^bb0(%in: f32, %out: f16): | ||
%18 = arith.truncf %in : f32 to f16 | ||
linalg.yield %18 : f16 | ||
} -> tensor<2x10x4096x64xf16> | ||
%16 = linalg.generic { | ||
indexing_maps = [affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)>, | ||
affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)>], | ||
iterator_types = ["parallel", "parallel", "parallel", "parallel"]} | ||
ins(%14#1 : tensor<2x10x4096x64xf32>) outs(%11 : tensor<2x10x4096x64xf16>) { | ||
^bb0(%in: f32, %out: f16): | ||
%18 = arith.truncf %in : f32 to f16 | ||
linalg.yield %18 : f16 | ||
} -> tensor<2x10x4096x64xf16> | ||
%17 = linalg.generic { | ||
indexing_maps = [affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)>, | ||
affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)>], | ||
iterator_types = ["parallel", "parallel", "parallel", "parallel"]} | ||
ins(%14#2 : tensor<2x10x64x4096xf32>) outs(%9 : tensor<2x10x64x4096xf16>) { | ||
^bb0(%in: f32, %out: f16): | ||
%18 = arith.truncf %in : f32 to f16 | ||
linalg.yield %18 : f16 | ||
} -> tensor<2x10x64x4096xf16> | ||
return %15, %16, %17 | ||
: tensor<2x10x4096x64xf16>, tensor<2x10x4096x64xf16>, tensor<2x10x64x4096xf16> | ||
} | ||
// CHECK-LABEL: func @fused_contraction_4 | ||
// CHECK-SAME: translation_info = #iree_codegen.translation_info | ||
// CHECK-SAME: pipeline = LLVMGPUVectorDistribute | ||
// CHECK-SAME: workgroup_size = [256, 1, 1] | ||
// CHECK-SAME: subgroup_size = 64 | ||
// CHECK: %[[GENERIC:.+]]:3 = linalg.generic | ||
// CHECK-SAME: lowering_config = #iree_gpu.lowering_config | ||
// CHECK-SAME: mma_kind = #iree_gpu.mma_layout<MFMA_F32_16x16x16_F16 | ||
// CHECK-SAME: promote_operands = [0, 1, 2, 3] | ||
// CHECK-SAME: reduction = [0, 0, 0, 0, 128] | ||
// CHECK-SAME: subgroup_m_count = 2 | ||
// CHECK-SAME: subgroup_n_count = 2 | ||
// CHECK-SAME: workgroup = [1, 1, 32, 32, 0] |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.