Skip to content

Commit

Permalink
2021/9/19 TODO:mlm
Browse files Browse the repository at this point in the history
  • Loading branch information
louishsu committed Sep 18, 2021
1 parent ed51754 commit d8657ac
Show file tree
Hide file tree
Showing 3 changed files with 600 additions and 0 deletions.
44 changes: 44 additions & 0 deletions prepare_corpus.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,44 @@
import os
from argparse import ArgumentParser

def get_xxcq_corpus():
""" 信息抽取 """
...

def get_sfzy_corpus():
""" 司法摘要 """
...

def get_sfks_corpus():
""" 司法考试 """
...

def get_aqbq_corpus():
""" 案情标签 """
...

def get_aljs_corpus():
""" 案类检索 """
...

def get_bllj_corpus():
""" 辩论理解 """
...

def get_ydlj_corpus():
""" 阅读理解 """
...

def main(args):
args.output_dir = os.path.join(args.output_dir, f"mlm-seed{args.seed}")

...

if __name__ == '__main__':
parser = ArgumentParser()
parser.add_argument("--data_dir", type=str, default="data/")
parser.add_argument("--output_dir", type=str, default="data/")
parser.add_argument("--seed", default=42, type=int, help="Seed.")
args = parser.parse_args()

main(args)
148 changes: 148 additions & 0 deletions run_chinese_ref.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,148 @@
import argparse
import json
from typing import List

from ltp import LTP
from transformers.models.bert.tokenization_bert import BertTokenizer


def _is_chinese_char(cp):
"""Checks whether CP is the codepoint of a CJK character."""
# This defines a "chinese character" as anything in the CJK Unicode block:
# https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block)
#
# Note that the CJK Unicode block is NOT all Japanese and Korean characters,
# despite its name. The modern Korean Hangul alphabet is a different block,
# as is Japanese Hiragana and Katakana. Those alphabets are used to write
# space-separated words, so they are not treated specially and handled
# like the all of the other languages.
if (
(cp >= 0x4E00 and cp <= 0x9FFF)
or (cp >= 0x3400 and cp <= 0x4DBF) #
or (cp >= 0x20000 and cp <= 0x2A6DF) #
or (cp >= 0x2A700 and cp <= 0x2B73F) #
or (cp >= 0x2B740 and cp <= 0x2B81F) #
or (cp >= 0x2B820 and cp <= 0x2CEAF) #
or (cp >= 0xF900 and cp <= 0xFAFF)
or (cp >= 0x2F800 and cp <= 0x2FA1F) #
): #
return True

return False


def is_chinese(word: str):
# word like '180' or '身高' or '神'
for char in word:
char = ord(char)
if not _is_chinese_char(char):
return 0
return 1


def get_chinese_word(tokens: List[str]):
word_set = set()

for token in tokens:
chinese_word = len(token) > 1 and is_chinese(token)
if chinese_word:
word_set.add(token)
word_list = list(word_set)
return word_list


def add_sub_symbol(bert_tokens: List[str], chinese_word_set: set()):
if not chinese_word_set:
return bert_tokens
max_word_len = max([len(w) for w in chinese_word_set])

bert_word = bert_tokens
start, end = 0, len(bert_word)
while start < end:
single_word = True
if is_chinese(bert_word[start]):
l = min(end - start, max_word_len)
for i in range(l, 1, -1):
whole_word = "".join(bert_word[start : start + i])
if whole_word in chinese_word_set:
for j in range(start + 1, start + i):
bert_word[j] = "##" + bert_word[j]
start = start + i
single_word = False
break
if single_word:
start += 1
return bert_word


def prepare_ref(lines: List[str], ltp_tokenizer: LTP, bert_tokenizer: BertTokenizer):
ltp_res = []

for i in range(0, len(lines), 100):
res = ltp_tokenizer.seg(lines[i : i + 100])[0]
res = [get_chinese_word(r) for r in res]
ltp_res.extend(res)
assert len(ltp_res) == len(lines)

bert_res = []
for i in range(0, len(lines), 100):
res = bert_tokenizer(lines[i : i + 100], add_special_tokens=True, truncation=True, max_length=512)
bert_res.extend(res["input_ids"])
assert len(bert_res) == len(lines)

ref_ids = []
for input_ids, chinese_word in zip(bert_res, ltp_res):

input_tokens = []
for id in input_ids:
token = bert_tokenizer._convert_id_to_token(id)
input_tokens.append(token)
input_tokens = add_sub_symbol(input_tokens, chinese_word)
ref_id = []
# We only save pos of chinese subwords start with ##, which mean is part of a whole word.
for i, token in enumerate(input_tokens):
if token[:2] == "##":
clean_token = token[2:]
# save chinese tokens' pos
if len(clean_token) == 1 and _is_chinese_char(ord(clean_token)):
ref_id.append(i)
ref_ids.append(ref_id)

assert len(ref_ids) == len(bert_res)

return ref_ids


def main(args):
# For Chinese (Ro)Bert, the best result is from : RoBERTa-wwm-ext (https://github.com/ymcui/Chinese-BERT-wwm)
# If we want to fine-tune these model, we have to use same tokenizer : LTP (https://github.com/HIT-SCIR/ltp)
with open(args.file_name, "r", encoding="utf-8") as f:
data = f.readlines()
data = [line.strip() for line in data if len(line) > 0 and not line.isspace()] # avoid delimiter like '\u2029'
ltp_tokenizer = LTP(args.ltp) # faster in GPU device
bert_tokenizer = BertTokenizer.from_pretrained(args.bert)

ref_ids = prepare_ref(data, ltp_tokenizer, bert_tokenizer)

with open(args.save_path, "w", encoding="utf-8") as f:
data = [json.dumps(ref) + "\n" for ref in ref_ids]
f.writelines(data)


if __name__ == "__main__":
parser = argparse.ArgumentParser(description="prepare_chinese_ref")
parser.add_argument(
"--file_name",
type=str,
default="./resources/chinese-demo.txt",
help="file need process, same as training data in lm",
)
parser.add_argument(
"--ltp", type=str, default="./resources/ltp", help="resources for LTP tokenizer, usually a path"
)
parser.add_argument("--bert", type=str, default="./resources/robert", help="resources for Bert tokenizer")
parser.add_argument("--save_path", type=str, default="./resources/ref.txt", help="path to save res")

args = parser.parse_args()
main(args)

Loading

0 comments on commit d8657ac

Please sign in to comment.