- Uses TensorFlow to create a Logistic Regression classifier
- Full ML pipeline with tensorflow backend
Imports raw data from csv, randomizes data, preprocesses data, splits data, trains model, tests model, saves model
Uses TensorBoard to visualize the results
- TensorFlow
- Backend for training and model visualization
- NumPy
- Data preprocessing and manipulation
- Pandas
- Data preprocessing and manipulation
- Matplotlib
- Data visualization backend
- Seaborn
- Data visualization helper
python iris.py [-h] [--visual] [--learning_rate LEARNING_RATE]
[--filename FILENAME] [--stddev STDDEV]
Train/test iris dataset using logistic regression
optional arguments:
-h, --help show this help message and exit
--load load model rather than train
--visual plot data and features prior to load/test
--learning_rate LEARNING_RATE
learning rate for GradientDescentOptimizer
--filename FILENAME file to store/load model to/from
--stddev STDDEV standard deviation for random_normal init values
- Save to default filename, use default hyperparameters
python iris.py
- Load from default filename
python iris.py --load
- Use custom hyperparameters, save to custom file, show features before training
python iris.py --visual --learning_rate 0.1 --filename my_model --stddev 0.5
- Load from custom file
python iris.py --load --filename my_model
-
0.2.1
- Rework tensorboard and model saving directory
-
0.2.0
- Add TensorBoard support
- Show validation set accuracy during training
- Implement tf.name_scope for organization of variables
-
0.1.2
- Added command line arguments for learning rate and filename
- Allow save/restore from any file
-
0.1.1
- Changed command line argument implementation to use argparse
-
0.1.0
- Initial version