Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Release and Data Library Fixes #257

Merged
merged 7 commits into from
Nov 20, 2024
Merged
Show file tree
Hide file tree
Changes from 6 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 2 additions & 0 deletions DESCRIPTION
Original file line number Diff line number Diff line change
Expand Up @@ -33,10 +33,12 @@ Imports:
CompQuadForm,
sp,
dfoptim,
nleqslv,
patchwork
Remotes:
jasp-stats/jaspBase,
jasp-stats/jaspGraphs
Depends:
R (>= 2.10)
LazyData: true
RoxygenNote: 7.3.2
72 changes: 64 additions & 8 deletions R/classicalmetaanalysiscommon.R
Original file line number Diff line number Diff line change
Expand Up @@ -54,6 +54,7 @@

# model summary
.maResidualHeterogeneityTable(jaspResults, dataset, options)
.maPooledEffectSizeTestTable(jaspResults, dataset, options)
.maModeratorsTable(jaspResults, dataset, options)
.maPooledEstimatesTable(jaspResults, dataset, options)

Expand Down Expand Up @@ -364,6 +365,48 @@

return()
}
.maPooledEffectSizeTestTable <- function(jaspResults, dataset, options) {

modelSummaryContainer <- .maExtractModelSummaryContainer(jaspResults)

if (!is.null(modelSummaryContainer[["pooledEffectSizeTest"]]))
return()

fit <- .maExtractFit(jaspResults, options)

pooledEffectSizeTest <- createJaspTable(gettext("Pooled Effect Size Test"))
pooledEffectSizeTest$position <- 1.1
pooledEffectSizeTest$dependOn("confidenceIntervals")
modelSummaryContainer[["pooledEffectSizeTest"]] <- pooledEffectSizeTest

pooledEffectSizeTest$addColumnInfo(name = "est", type = "number", title = gettext("Estimate"))
pooledEffectSizeTest$addColumnInfo(name = "se", type = "number", title = gettext("Standard Error"))
pooledEffectSizeTest$addColumnInfo(name = "stat", type = "number", title = if(.maIsMetaregressionFtest(options)) gettext("t") else gettext("z"))
if (.maIsMetaregressionFtest(options))
pooledEffectSizeTest$addColumnInfo(name = "df", type = "number", title = gettext("df"))
pooledEffectSizeTest$addColumnInfo(name = "pval", type = "pvalue", title = gettext("p"))

if (is.null(fit) || jaspBase::isTryError(fit))
return()

# do not perform transformation on the estimate (keep est and se on the same scale)
options[["transformEffectSize"]] <- "none"
predictedEffect <- .maComputePooledEffectPlot(fit, options)

estimates <- data.frame(
est = predictedEffect[["est"]],
se = predictedEffect[["se"]],
stat = predictedEffect[["stat"]],
pval = predictedEffect[["pval"]]
)

if (.maIsMetaregressionFtest(options))
estimates$df <- predictedEffect[["df"]]

pooledEffectSizeTest$setData(estimates)

return()
}
.maModeratorsTable <- function(jaspResults, dataset, options) {

modelSummaryContainer <- .maExtractModelSummaryContainer(jaspResults)
Expand Down Expand Up @@ -1576,7 +1619,7 @@
if (.mammHasMultipleHeterogeneities(options, canAddOutput = TRUE) && options[["predictionIntervals"]])
predictedEffect <- cbind(predictedEffect, tauLevels)

return(predictedEffect <- apply(predictedEffect, 1, as.list))
return(apply(predictedEffect, 1, as.list))
}
.maComputePooledEffectPlot <- function(fit, options) {

Expand Down Expand Up @@ -2489,7 +2532,12 @@
rmaInput <- c(rmaInput, .maExtendMetaforCallFromOptions(options))

### fit the model
fit <- paste0("fit <- rma(\n\t", paste(names(rmaInput), "=", rmaInput, collapse = ",\n\t"), "\n)\n")
if (.maIsMultilevelMultivariate(options)) {
fit <- paste0("fit <- rma.mv(\n\t", paste(names(rmaInput), "=", rmaInput, collapse = ",\n\t"), "\n)\n")
} else {
fit <- paste0("fit <- rma(\n\t", paste(names(rmaInput), "=", rmaInput, collapse = ",\n\t"), "\n)\n")
}


# add clustering if specified
if (options[["clustering"]] != "") {
Expand Down Expand Up @@ -2819,14 +2867,22 @@
.maGetControlOptions <- function(options) {

if (.maIsMetaregressionHeterogeneity(options)) {
out <- list(
optimizer = options[["optimizerMethod"]],
iter.max = if (options[["optimizerMaximumIterations"]]) options[["optimizerMaximumIterationsValue"]],
rel.tol = if (options[["optimizerConvergenceRelativeTolerance"]]) options[["optimizerConvergenceRelativeToleranceValue"]]
)
if (options[["optimizerMethod"]] == "nlminb" && !options[["optimizerMaximumIterations"]] && !options[["optimizerConvergenceRelativeTolerance"]]) {
# allow an empty list for default settings --- this allows manual modification of the control argument through extra input
out <- list()
} else {
out <- list(
optimizer = options[["optimizerMethod"]],
iter.max = if (options[["optimizerMaximumIterations"]]) options[["optimizerMaximumIterationsValue"]],
rel.tol = if (options[["optimizerConvergenceRelativeTolerance"]]) options[["optimizerConvergenceRelativeToleranceValue"]]
)
}
} else {
if (.maIsMultilevelMultivariate(options)) {
if (options[["optimizerMethod"]] == "nlminb") {
if (options[["optimizerMethod"]] == "nlminb" && !options[["optimizerMaximumEvaluations"]] && !options[["optimizerMaximumIterations"]] && !options[["optimizerConvergenceRelativeTolerance"]]) {
# allow an empty list for default settings --- this allows manual modification of the control argument through extra input
out <- list()
} else if (options[["optimizerMethod"]] == "nlminb") {
out <- list(
optimizer = options[["optimizerMethod"]],
eval.max = if (options[["optimizerMaximumEvaluations"]]) options[["optimizerMaximumEvaluationsValue"]],
Expand Down
30 changes: 18 additions & 12 deletions R/classicalmetaanalysismultilevelmultivariate.R
Original file line number Diff line number Diff line change
Expand Up @@ -181,7 +181,12 @@ ClassicalMetaAnalysisMultilevelMultivariate <- function(jaspResults, dataset = N
if (distanceMatrixFileName != "" && tempValueInner != "") {

# try regular csv loading
distanceMatrix <- try(as.matrix(read.csv(file = distanceMatrixFileName, row.names = 1)))
if (tolower(gsub(" ", "", distanceMatrixFileName)) == "examplemaire2019distancematrix") {
# allow to load example data for data library
data("exampleMaire2019DistanceMatrix")
}else{
distanceMatrix <- try(as.matrix(read.csv(file = distanceMatrixFileName, row.names = 1)))
}

if (inherits(distanceMatrix, "try-error"))
.quitAnalysis(gettextf("Error reading the distance matrix file: %1$s", distanceMatrix))
Expand Down Expand Up @@ -340,13 +345,14 @@ ClassicalMetaAnalysisMultilevelMultivariate <- function(jaspResults, dataset = N
}
.mammRandomEstimatesTable <- function(jaspResults, dataset, options) {

if (!is.null(jaspResults[["randomEstimatesContainer"]]))
return()

randomEstimatesContainer <- createJaspContainer(title = gettext("Random Effects / Model Stucture Summary"))
randomEstimatesContainer$dependOn(.maDependencies)
randomEstimatesContainer$position <- 2
jaspResults[["randomEstimatesContainer"]] <- randomEstimatesContainer
if (!is.null(jaspResults[["randomEstimatesContainer"]])) {
randomEstimatesContainer <- jaspResults[["randomEstimatesContainer"]]
} else {
randomEstimatesContainer <- createJaspContainer(title = gettext("Random Effects / Model Stucture Summary"))
randomEstimatesContainer$dependOn(.maDependencies)
randomEstimatesContainer$position <- 2
jaspResults[["randomEstimatesContainer"]] <- randomEstimatesContainer
}

fit <- .maExtractFit(jaspResults, options)

Expand All @@ -355,7 +361,7 @@ ClassicalMetaAnalysisMultilevelMultivariate <- function(jaspResults, dataset = N
return()

### create table for nested random effects
if (fit[["withS"]]) {
if (fit[["withS"]] && is.null(randomEstimatesContainer[["containerS"]])) {

containerS <- createJaspContainer(title = gettext("Simple / Nested Summary"))
containerS$position <- 1
Expand Down Expand Up @@ -390,7 +396,7 @@ ClassicalMetaAnalysisMultilevelMultivariate <- function(jaspResults, dataset = N
}

### create summary for the remaining types
if (fit[["withG"]]) {
if (fit[["withG"]] && is.null(randomEstimatesContainer[["containerG"]])) {

# create jasp containers
containerG <- createJaspContainer(title = .mammGetRandomEstimatesTitle(fit[["struct"]][1]))
Expand All @@ -400,7 +406,7 @@ ClassicalMetaAnalysisMultilevelMultivariate <- function(jaspResults, dataset = N

}

if (fit[["withH"]]) {
if (fit[["withH"]] && is.null(randomEstimatesContainer[["containerH"]])) {

containerH <- createJaspContainer(title = .mammGetRandomEstimatesTitle(fit[["struct"]][2]))
containerH$position <- 3
Expand All @@ -410,7 +416,7 @@ ClassicalMetaAnalysisMultilevelMultivariate <- function(jaspResults, dataset = N
}

### create random structure inclusion summary
if (options[["randomEffectsTestInclusion"]]) {
if (options[["randomEffectsTestInclusion"]] && is.null(randomEstimatesContainer[["tableInclusion"]])) {

tableInclusion <- createJaspTable(title = gettext("Inclusion Test"))
tableInclusion$position <- 4
Expand Down
14 changes: 13 additions & 1 deletion R/data.R
Original file line number Diff line number Diff line change
Expand Up @@ -5,7 +5,19 @@
#' (vignette at https://cran.r-project.org/web/packages/RoBMA/vignettes/Tutorial.html)
#'
#'
#' @format An RDS file
#' @format An RData file
#'
#' @return An object of class RoBMA.
"exampleRobmaLui2015"


#' @title Maire 2019 distance matrix
#'
#' @description Distance matrix from Maire et al. (2019) for the example
#' multilevel/multivariate meta-analysis. See dat.maire2019 in the metadat
#' package.
#'
#' @format An Rdata file
#'
#' @return A distance matrix
"exampleMaire2019DistanceMatrix"
Binary file added data/exampleMaire2019DistanceMatrix.RData
Binary file not shown.
1 change: 1 addition & 0 deletions inst/qml/ClassicalMetaAnalysisMultilevelMultivariate.qml
Original file line number Diff line number Diff line change
Expand Up @@ -82,6 +82,7 @@ Form
id: predictors
title: qsTr("Predictors")
allowedColumns: ["nominal", "scale"]
allowTypeChange: true
info: qsTr("Variables to include as predictors (moderators) in the meta-regression model.")
}

Expand Down
Loading
Loading