Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

blocked regression logistic, use casewise functions from lin reg #301

Merged
merged 3 commits into from
Apr 24, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
145 changes: 56 additions & 89 deletions R/commonglm.R
Original file line number Diff line number Diff line change
@@ -1,20 +1,33 @@
# Compute Model
.reglogisticComputeModel <- function(jaspResults, dataset, options) {
if(!is.null(jaspResults[["glmRes"]]))
return(jaspResults[["glmRes"]]$object)
type <- "binomial"
if (type == "binomial") {
.reglogisticComputeModel <- function(jaspResults, dataset, options, ready) {
if(!is.null(jaspResults[["glmRes"]]) || isFALSE(ready))
return()

# Logistic regression
ff <- .createLogisticRegFormula(options)
nf <- .createNullFormula(options)
# calculate null and full models
nullMod <- glm(nf, family = "binomial", data = dataset)
fullMod <- glm(ff, family = "binomial", data = dataset)
modelTerms <- options[["modelTerms"]]
dependent <- options[["dependent"]]
interceptTerm <- options[["interceptTerm"]]
if (options[["method"]] == "enter") {

glmRes <- list()
for (modelIndex in seq_along(modelTerms)) {

model <- glm(.createLogisticRegFormula(modelTerms[[modelIndex]], dependent, interceptTerm),
family = "binomial", dataset)
glmRes[[modelIndex]] <- model

}

} else if (options[["method"]] != "enter") {
nullMod <- glm(.createLogisticRegFormula(modelTerms[[1]], dependent, interceptTerm),
family = "binomial", dataset)
fullMod <- glm(.createLogisticRegFormula(modelTerms[[length(modelTerms)]], dependent, interceptTerm),
family = "binomial", dataset)
glmRes <- .glmStep(nullMod, fullMod, dataset, method = options$method)
} else
.quitAnalysis("GLM type not supported")
}

jaspResults[["glmRes"]] <- createJaspState(glmRes)
jaspResults[["glmRes"]]$dependOn(optionsFromObject = jaspResults[["modelSummary"]])
jaspResults[["glmRes"]]$dependOn( c("dependent", "method", "modelTerms", "interceptTerm"))
return(glmRes)
}

Expand Down Expand Up @@ -64,34 +77,33 @@
return(f)
}

.createLogisticRegFormula <- function(options) {
.createLogisticRegFormula <- function(modelOptions, dependent, interceptTerm) {
# this function outputs a formula name with base64 values as varnames
f <- NULL

dependent <- options$dependent
if (dependent == "")
f <- 0~1 # mock formula, always works

modelTerms <- options$modelTerms
interceptTerm <- options$interceptTerm
modelTerms <- modelOptions$components
interceptTerm <- interceptTerm
if (length(modelTerms) == 0) {
if (interceptTerm)
f <- formula(paste(.v(dependent), "~ 1"))
f <- formula(paste(dependent, "~ 1"))
else
f <- formula(paste(.v(dependent), "~ 0"))
f <- formula(paste(dependent, "~ 0"))
} else {
if (interceptTerm)
t <- character(0)
else
t <- "0"
for (i in seq_along(modelTerms)) {
term <- modelTerms[[i]][["components"]]
term <- modelTerms[[i]]
if (length(term) == 1)
t <- c(t, .v(term))
t <- c(t, term)
else
t <- c(t, paste(.v(unlist(term)), collapse = ":"))
t <- c(t, paste(unlist(term), collapse = ":"))
}
f <- formula(paste(.v(dependent), "~", paste(t, collapse = "+")))
f <- formula(paste(dependent, "~", paste(t, collapse = "+")))
}
return(f)
}
Expand All @@ -114,15 +126,15 @@
if (length(term) == 1)
t <- c(t, .v(term))
else
t <- c(t, paste(.v(unlist(term)), collapse = ":"))
t <- c(t, paste(unlist(term), collapse = ":"))
}
}
if (!interceptTerm)
t <- c(t, "0")
else
t <- c(t, "1")

return(formula(paste(.v(dependent), "~", paste(t, collapse = "+"))))
return(formula(paste(dependent, "~", paste(t, collapse = "+"))))
}

.glmStep <- function(nullModel, fullModel, dataset, method = "enter") {
Expand Down Expand Up @@ -374,7 +386,9 @@
if (isFALSE(options[["residualsSavedToData"]]))
return()

if (is.null(container[["residualsSavedToDataColumn"]]) && options[["residualsSavedToDataColumn"]] != "") {
if (is.null(container[["residualsSavedToDataColumn"]]) &&
isFALSE(is.null(options[["residualsSavedToDataColumn"]])) &&
options[["residualsSavedToDataColumn"]] != "") {

residuals <- model[["residuals"]] # extract residuals

Expand Down Expand Up @@ -737,8 +751,8 @@


# Table: Influential cases
.glmInfluenceTable <- function(jaspResults, model, dataset, options, ready, position, linRegAnalysis = FALSE) {
.glmInfluenceTable <- function(jaspResults, model, dataset, options, ready, position, logisticRegression = FALSE) {

tableOptionsOn <- c(options[["dfbetas"]],
options[["dffits"]],
options[["covarianceRatio"]],
Expand All @@ -756,16 +770,16 @@
tableOptionsClicked <- c("cooksDistance", tableOptionsClicked)

if (is.null(jaspResults[["influenceTable"]])) {
influenceTable <- createJaspTable(gettext("Table: Influential Cases"))
influenceTable$dependOn(optionsFromObject = jaspResults[["modelSummary"]],
options = tableOptions)
influenceTable$dependOn(c("residualCasewiseDiagnostic", "residualCasewiseDiagnosticType",
"residualCasewiseDiagnosticZThreshold", "residualCasewiseDiagnosticCooksDistanceThreshold"))
influenceTable <- createJaspTable(gettext("Influential Cases"))
influenceTable$dependOn(c(tableOptions, "dependent", "method", "modelTerms", "interceptTerm",
"residualCasewiseDiagnostic", "residualCasewiseDiagnosticType",
"residualCasewiseDiagnosticZThreshold",
"residualCasewiseDiagnosticCooksDistanceThreshold"))
influenceTable$position <- position
influenceTable$showSpecifiedColumnsOnly <- TRUE
jaspResults[["influenceTable"]] <- influenceTable
}

tableOptionToColName <- function(x) {
switch(x,
"dfbetas" = "DFBETAS",
Expand All @@ -783,13 +797,15 @@
}
} else {

colNameList <- c()

depType <- if (isFALSE(logisticRegression)) "number" else "string"
influenceTable$addColumnInfo(name = "caseN", title = "Case Number", type = "integer")
influenceTable$addColumnInfo(name = "stdResidual", title = gettext("Std. Residual"), type = "number", format = "dp:3")
influenceTable$addColumnInfo(name = "dependent", title = options$dependent, type = "number")
influenceTable$addColumnInfo(name = "dependent", title = options$dependent, type = depType)
influenceTable$addColumnInfo(name = "predicted", title = gettext("Predicted Value"), type = "number")
influenceTable$addColumnInfo(name = "residual", title = gettext("Residual"), type = "number", format = "dp:3")

colNameList <- c()
alwaysPresent <- c("caseN", "stdResidual", "dependent", "predicted", "residual")
for (option in tableOptionsClicked) {
if (option == "dfbetas") {
Expand All @@ -809,6 +825,7 @@
influenceTable$addColumnInfo(name = option, title = gettext(colTitle), type = "number")
}
}

.glmInfluenceTableFill(influenceTable, dataset, options, ready,
model = model,
influenceMeasures = tableOptionsClicked,
Expand All @@ -817,7 +834,7 @@
}

.glmInfluenceTableFill <- function(influenceTable, dataset, options, ready, model, influenceMeasures, colNames) {

influenceRes <- influence.measures(model)
nDFBETAS <- length(names(model$coefficients))

Expand Down Expand Up @@ -845,7 +862,7 @@
influenceResData[["dependent"]] <- model.frame(model)[[options$dependent]]
influenceResData[["predicted"]] <- model$fitted.values
influenceResData[["residual"]] <- model$residual
# browser()

modelMatrix <- as.data.frame(model.matrix(model))
modelMatrix <- modelMatrix[colnames(modelMatrix) != "(Intercept)"]
influenceResData[["mahalanobis"]] <- mahalanobis(modelMatrix, center = colMeans(modelMatrix), cov = cov(modelMatrix))
Expand All @@ -856,7 +873,7 @@
index <- which(abs(influenceResData[["stdResidual"]]) > options$residualCasewiseDiagnosticZThreshold)
else # all
index <- seq.int(nrow(influenceResData))

# funky statement to ensure a df even if only 1 row
influenceResSig <- subset(influenceRes[["is.inf"]], 1:nrow(influenceResData) %in% index, select = colInd)
colnames(influenceResSig) <- colNames[1:length(colInd)]
Expand Down Expand Up @@ -887,56 +904,6 @@
}
}

.casewiseDiagnosticsLogisticRegression <- function(dataset, model, options) {
last <- length(model)

# Values for all cases
dependentAll <- dataset[[.v(options$dependent)]]
dependentAllNumeric <- rep(0, nrow(dataset))
dependentAllNumeric[dependentAll == levels(dataset[[.v(options$dependent)]])[2]] <- 1
predictedAll <- predict(model[[last]], dataset, type = "response")
predictedGroupAll <- rep(levels(dataset[[.v(options$dependent)]])[1], nrow(dataset))
predictedGroupAll[predictedAll >= 0.5] <- levels(dataset[[.v(options$dependent)]])[2]
residualAll <- resid(model[[last]], type = "response")
residualZAll <- resid(model[[last]], type = "pearson")
cooksDAll <- cooks.distance(model[[last]])

# These will be the variables for the return object
dependent <- NA
predicted <- NA
predictedGroup <- NA
residual <- NA
residualZ <- NA
cooksD <- NA


if (options$residualCasewiseDiagnosticType == "residualZ")
index <- which(abs(residualZAll) > options$residualCasewiseDiagnosticZThreshold)
else if (options$residualCasewiseDiagnosticType == "cooksDistance")
index <- which(abs(cooksDAll) > options$residualCasewiseDiagnosticCooksDistanceThreshold)
else
index <- seq_along(cooksDAll)

if (length(index) == 0)
index <- NA
else {
dependent <- dependentAll[index]
predicted <- predictedAll[index]
predictedGroup <- predictedGroupAll[index]
residual <- residualAll[index]
residualZ <- residualZAll[index]
cooksD <- cooksDAll[index]
}
casewiseDiag <- list(index = unname(index),
dependent = as.character(dependent),
predicted = unname(predicted),
predictedGroup = as.character(predictedGroup),
residual = unname(residual),
residualZ = unname(residualZ),
cooksD = unname(cooksD))
return(casewiseDiag)
}

.reglogisticVovkSellke <- function(table, options) {
table$addColumnInfo(name = "vsmpr", title = gettextf("VS-MPR%s", "\u002A"), type = "number")
message <- gettextf("Vovk-Sellke Maximum <em>p</em>-Ratio: Based on the <em>p</em>-value,
Expand Down
2 changes: 1 addition & 1 deletion R/regressionlinear.R
Original file line number Diff line number Diff line change
Expand Up @@ -52,7 +52,7 @@ RegressionLinearInternal <- function(jaspResults, dataset = NULL, options) {
finalModel <- model[[length(model)]]

if (options$residualCasewiseDiagnostic && is.null(modelContainer[["influenceTable"]]))
.glmInfluenceTable(modelContainer, finalModel$fit, dataset, options, ready = ready, position = 9, linRegAnalysis = TRUE)
.glmInfluenceTable(modelContainer, finalModel$fit, dataset, options, ready = ready, position = 9)
.regressionExportResiduals(modelContainer, finalModel$fit, dataset, options, ready = ready)


Expand Down
Loading
Loading