Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Regression bug fixes #350

Merged
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
9 changes: 8 additions & 1 deletion R/commonglm.R
Original file line number Diff line number Diff line change
Expand Up @@ -867,7 +867,14 @@

modelMatrix <- as.data.frame(model.matrix(model))
modelMatrix <- modelMatrix[colnames(modelMatrix) != "(Intercept)"]
influenceResData[["mahalanobis"]] <- mahalanobis(modelMatrix, center = colMeans(modelMatrix), cov = cov(modelMatrix))

if (ncol(modelMatrix) > 0) {
influenceResData[["mahalanobis"]] <- mahalanobis(modelMatrix, center = colMeans(modelMatrix), cov = cov(modelMatrix))
} else if (options[["mahalanobis"]]) {
influenceTable$addFootnote(
gettext("Mahalanobis distance cannot be computed for the intercept only model.")
)
}

if (options$residualCasewiseDiagnosticType == "cooksDistance")
index <- which(abs(influenceResData[["cooksDistance"]]) > options$residualCasewiseDiagnosticCooksDistanceThreshold)
Expand Down
21 changes: 14 additions & 7 deletions R/generalizedlinearmodel.R
Original file line number Diff line number Diff line change
Expand Up @@ -102,21 +102,24 @@ GeneralizedLinearModelInternal <- function(jaspResults, dataset = NULL, options,
limits.min = 0,
limits.max = Inf,
exitAnalysisIfErrors = TRUE)

if (length(options$factors) != 0)
.hasErrors(dataset,
type = "factorLevels",
factorLevels.target = options$factors,
factorLevels.amount = '< 2',
exitAnalysisIfErrors = TRUE)

if (options[["family"]] == "bernoulli") {

if (length(levels(dataset[, options[["dependent"]]])) != 2)
.quitAnalysis(gettext("The Bernoulli family requires the dependent variable to be a factor with 2 levels."))

} else if (options[["family"]] == "binomial") {

if (any(dataset[, options[["weights"]]] == 0))
.quitAnalysis(gettext("The Binomial family requires the weights variable (i.e. total number of trials) to be non-zero."))

if (any(dataset[, options[["dependent"]]] < 0) || any(dataset[, options[["dependent"]]] > 1))
.quitAnalysis(gettext("The Binomial family requires the dependent variable (i.e. proportion of successes) to be between 0 and 1 (inclusive)."))

Expand Down Expand Up @@ -414,7 +417,11 @@ GeneralizedLinearModelInternal <- function(jaspResults, dataset = NULL, options,
rowNames <- rownames(modelSummary)

if (options[["coefficientCi"]]) {
coefCiSummary <- confint(fullModel, level = options[["coefficientCiLevel"]])
coefCiSummary <- try(confint(fullModel, level = options[["coefficientCiLevel"]]))
if (jaspBase::isTryError(coefCiSummary)) {
jaspResults[["estimatesTable"]]$setError("Confidence intervals not available for this model, try other predictors, families, or links.")
return()
}
if (length(rowNames) == 1) coefCiSummary <- matrix(coefCiSummary, ncol = 2)
} else {
coefCiSummary <- matrix(nrow = length(rowNames),
Expand Down Expand Up @@ -477,14 +484,14 @@ GeneralizedLinearModelInternal <- function(jaspResults, dataset = NULL, options,
.glmOutlierTable(jaspResults, dataset, options, ready, position = 8, residType = "standardized deviance")
.glmOutlierTable(jaspResults, dataset, options, ready, position = 8, residType = "studentized deviance")

.glmInfluenceTable(jaspResults[["diagnosticsContainer"]],
.glmInfluenceTable(jaspResults[["diagnosticsContainer"]],
jaspResults[["glmModels"]][["object"]][["fullModel"]],
dataset, options, ready, position = 9)
.regressionExportResiduals(jaspResults,

.regressionExportResiduals(jaspResults,
jaspResults[["glmModels"]][["object"]][["fullModel"]],
dataset, options, ready)

.glmMulticolliTable(jaspResults, dataset, options, ready, position = 10)

return()
Expand Down
35 changes: 19 additions & 16 deletions R/regressionlogistic.R
Original file line number Diff line number Diff line change
Expand Up @@ -361,9 +361,9 @@ RegressionLogisticInternal <- function(jaspResults, dataset = NULL, options, ...
rows <- vector("list", length(glmObj))

for (midx in seq_along(glmObj)) {

if (options$method == "enter")
.linregAddPredictorsInModelFootnote(jaspResults[["modelSummary"]],
.linregAddPredictorsInModelFootnote(jaspResults[["modelSummary"]],
options[["modelTerms"]][[midx]][["components"]], midx)
mObj <- glmObj[[midx]]
if (midx > 1) {
Expand Down Expand Up @@ -796,6 +796,9 @@ RegressionLogisticInternal <- function(jaspResults, dataset = NULL, options, ...
mObj <- glmObj[[length(glmObj)]]
predictors <- character(0)

if (is.null(options$modelTerms[[length(glmObj)]][["components"]])) {
return()
}
mComponents <- options$modelTerms[[length(glmObj)]][["components"]]
predictors <- unlist(sapply(mComponents, function(x) if(length(x) == 1) x))

Expand Down Expand Up @@ -904,7 +907,7 @@ RegressionLogisticInternal <- function(jaspResults, dataset = NULL, options, ...
container[["subContainer"]] <- createJaspContainer(gettext("Independent - predicted plots"))
subcontainer <- container[["subContainer"]]
if(!ready){
subcontainer[["placeholder"]] <- createJaspPlot(width = 480, height = 320, dependencies = c("independentVsPredictedPlot",
subcontainer[["placeholder"]] <- createJaspPlot(width = 480, height = 320, dependencies = c("independentVsPredictedPlot",
"independentVsPredictedPlotIncludeInteractions",
"independentVsPredictedPlotUseLogit"))
return()
Expand All @@ -914,32 +917,32 @@ RegressionLogisticInternal <- function(jaspResults, dataset = NULL, options, ...
glmObj <- jaspResults[["glmRes"]][["object"]]
mObj <- glmObj[[length(glmObj)]]
mComponents <- options$modelTerms[[length(glmObj)]][["components"]]

if (options[["independentVsPredictedPlotIncludeInteractions"]]) {
predictors <- sapply(mComponents, function(x) if(length(x) < 3) x)
} else {
predictors <- sapply(mComponents, function(x) if(length(x) == 1) x)
}

predictions <- predict(mObj, type = "response")
if(options[["independentVsPredictedPlotUseLogit"]]) {
predictions <- log(predictions / (1 - predictions))
predictions <- log(predictions / (1 - predictions))
yName <- "Logit Predicted Probability"
} else {
yName <- "Predicted Probability"
}

for (pred in predictors) {

facPredictorIndex <- which(pred %in% options[["factors"]])

for (i in seq_along(pred)) {

predictorLogitPlot <- createJaspPlot(title = paste(c(pred[i], pred[-i]), collapse = " \u273B "), width = 480, height = 320)
predictorLogitPlot$dependOn(c("independentVsPredictedPlot",
predictorLogitPlot$dependOn(c("independentVsPredictedPlot",
"independentVsPredictedPlotIncludeInteractions",
"independentVsPredictedPlotUseLogit"))

binContVar <- FALSE
if (length(pred) == 1) {
groupVar <- groupName <- NULL
Expand Down Expand Up @@ -967,13 +970,13 @@ RegressionLogisticInternal <- function(jaspResults, dataset = NULL, options, ...
yName = yName,
addSmooth = TRUE,
addSmoothCI = TRUE,
plotAbove = "none",
plotAbove = "none",
plotRight = "none",
showLegend = length(pred) > 1,
legendTitle = if (binContVar) paste0(groupName,"_binned") else groupName,
smoothCIValue = 0.95,
forceLinearSmooth = options[["independentVsPredictedPlotUseLogit"]]))

if(isTryError(p))
predictorLogitPlot$setError(.extractErrorMessage(p))
else {
Expand All @@ -982,10 +985,10 @@ RegressionLogisticInternal <- function(jaspResults, dataset = NULL, options, ...
predictorLogitPlot$plotObject <- p
}
subcontainer[[paste0(indepVar, groupName)]] <- predictorLogitPlot

}
}

return()
}

Expand Down
Loading