Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Fix distance computations in Native provider #389

Merged
merged 3 commits into from
Jan 23, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -653,6 +653,7 @@ public static void quantizePartials(float delta, MemorySegmentVectorFloat partia
//---------------------------------------------
// NVQ quantization instructions start here
//---------------------------------------------

static final FloatVector const1f = FloatVector.broadcast(FloatVector.SPECIES_PREFERRED, 1.f);
static final FloatVector const05f = FloatVector.broadcast(FloatVector.SPECIES_PREFERRED, 0.5f);

Expand Down Expand Up @@ -742,7 +743,7 @@ static void nvqQuantize8bit(MemorySegmentVectorFloat vector, float alpha, float
var invLogisticScale = 255 / (logisticNQT(maxValue, scaledAlpha, scaledX0) - logisticBias);

for (int i = 0; i < vectorizedLength; i += FloatVector.SPECIES_PREFERRED.length()) {
var arr = FloatVector.fromMemorySegment(FloatVector.SPECIES_PREFERRED, vector.get(), i, ByteOrder.LITTLE_ENDIAN);
var arr = FloatVector.fromMemorySegment(FloatVector.SPECIES_PREFERRED, vector.get(), vector.offset(i), ByteOrder.LITTLE_ENDIAN);
arr = logisticNQT(arr, scaledAlpha, scaledX0);
arr = arr.sub(logisticBias).mul(invLogisticScale);
var bytes = arr.add(const05f)
Expand Down Expand Up @@ -777,7 +778,7 @@ static float nvqLoss(MemorySegmentVectorFloat vector, float alpha, float x0, flo
var invLogisticScale = 1 / logisticScale;

for (int i = 0; i < vectorizedLength; i += FloatVector.SPECIES_PREFERRED.length()) {
var arr = FloatVector.fromMemorySegment(FloatVector.SPECIES_PREFERRED, vector.get(), i, ByteOrder.LITTLE_ENDIAN);
var arr = FloatVector.fromMemorySegment(FloatVector.SPECIES_PREFERRED, vector.get(), vector.offset(i), ByteOrder.LITTLE_ENDIAN);
var recArr = logisticNQT(arr, scaledAlpha, scaledX0);
recArr = recArr.sub(logisticBias).mul(invLogisticScale);
recArr = recArr.add(const05f)
Expand All @@ -803,7 +804,7 @@ static float nvqLoss(MemorySegmentVectorFloat vector, float alpha, float x0, flo
recValue = (recValue - logisticBias) * invLogisticScale;
recValue = Math.round(recValue);
recValue = Math.fma(logisticScale, recValue, logisticBias);
recValue = logitNQT(recValue, scaledAlpha, scaledX0);
recValue = logitNQT(recValue, invScaledAlpha, scaledX0);

squaredSum += MathUtil.square(value - recValue);
}
Expand All @@ -813,19 +814,21 @@ static float nvqLoss(MemorySegmentVectorFloat vector, float alpha, float x0, flo

static float nvqUniformLoss(MemorySegmentVectorFloat vector, float minValue, float maxValue, int nBits) {
float constant = (1 << nBits) - 1;
float delta = maxValue - minValue;

int vectorizedLength = FloatVector.SPECIES_PREFERRED.loopBound(vector.length());

FloatVector squaredSumVec = FloatVector.zero(FloatVector.SPECIES_PREFERRED);

for (int i = 0; i < vectorizedLength; i += FloatVector.SPECIES_PREFERRED.length()) {
var arr = FloatVector.fromMemorySegment(FloatVector.SPECIES_PREFERRED, vector.get(), i, ByteOrder.LITTLE_ENDIAN);
var recArr = arr.sub(minValue).mul(constant / (maxValue - minValue));
var arr = FloatVector.fromMemorySegment(FloatVector.SPECIES_PREFERRED, vector.get(), vector.offset(i), ByteOrder.LITTLE_ENDIAN);
var recArr = arr.sub(minValue).mul(constant / delta);
recArr = recArr.add(const05f)
.convert(VectorOperators.F2I, 0)
.reinterpretAsInts()
.convert(VectorOperators.I2F, 0)
.reinterpretAsFloats();
recArr = recArr.fma((maxValue - minValue) / constant, minValue);
recArr = recArr.fma(delta / constant, minValue);

var diff = arr.sub(recArr);
squaredSumVec = diff.fma(diff, squaredSumVec);
Expand All @@ -838,9 +841,9 @@ static float nvqUniformLoss(MemorySegmentVectorFloat vector, float minValue, flo
for (int i = vectorizedLength; i < vector.length(); i++) {
value = vector.get(i);

recValue = (value - minValue) / (maxValue - minValue);
recValue = (value - minValue) / delta;
recValue = Math.round(constant * recValue) / constant;
recValue = recValue / (maxValue - minValue) + minValue;
recValue = recValue * delta + minValue;

squaredSum += MathUtil.square(value - recValue);
}
Expand All @@ -866,7 +869,7 @@ static float nvqSquareDistance8bit(MemorySegmentVectorFloat vector, MemorySegmen
var byteArr = ByteVector.fromMemorySegment(ByteVector.SPECIES_PREFERRED, quantizedVector.get(), i, ByteOrder.LITTLE_ENDIAN);

for (int j = 0; j < 4; j++) {
var v1 = FloatVector.fromMemorySegment(FloatVector.SPECIES_PREFERRED, vector.get(), i + floatStep * j, ByteOrder.LITTLE_ENDIAN);
var v1 = FloatVector.fromMemorySegment(FloatVector.SPECIES_PREFERRED, vector.get(), vector.offset(i + floatStep * j), ByteOrder.LITTLE_ENDIAN);
var v2 = nvqDequantize8bit(byteArr, invScaledAlpha, scaledX0, logisticScale, logisticBias, j);

var diff = v1.sub(v2);
Expand All @@ -881,15 +884,14 @@ static float nvqSquareDistance8bit(MemorySegmentVectorFloat vector, MemorySegmen
for (int i = vectorizedLength; i < quantizedVector.length(); i++) {
value2 = Byte.toUnsignedInt(quantizedVector.get(i));
value2 = Math.fma(logisticScale, value2, logisticBias);
value2 = logitNQT(value2, scaledAlpha, scaledX0);
value2 = logitNQT(value2, invScaledAlpha, scaledX0);
diff = vector.get(i) - value2;
squaredSum += MathUtil.square(diff);
}

return squaredSum;
}


static float nvqDotProduct8bit(MemorySegmentVectorFloat vector, MemorySegmentByteSequence quantizedVector,
float alpha, float x0, float minValue, float maxValue) {
FloatVector dotProdVec = FloatVector.zero(FloatVector.SPECIES_PREFERRED);
Expand All @@ -904,12 +906,11 @@ static float nvqDotProduct8bit(MemorySegmentVectorFloat vector, MemorySegmentByt
var logisticBias = logisticNQT(minValue, scaledAlpha, scaledX0);
var logisticScale = (logisticNQT(maxValue, scaledAlpha, scaledX0) - logisticBias) / 255;


for (int i = 0; i < vectorizedLength; i += ByteVector.SPECIES_PREFERRED.length()) {
var byteArr = ByteVector.fromMemorySegment(ByteVector.SPECIES_PREFERRED, quantizedVector.get(), i, ByteOrder.LITTLE_ENDIAN);

for (int j = 0; j < 4; j++) {
var v1 = FloatVector.fromMemorySegment(FloatVector.SPECIES_PREFERRED, vector.get(), i + floatStep * j, ByteOrder.LITTLE_ENDIAN);
var v1 = FloatVector.fromMemorySegment(FloatVector.SPECIES_PREFERRED, vector.get(), vector.offset(i + floatStep * j), ByteOrder.LITTLE_ENDIAN);
var v2 = nvqDequantize8bit(byteArr, invScaledAlpha, scaledX0, logisticScale, logisticBias, j);
dotProdVec = v1.fma(v2, dotProdVec);
}
Expand All @@ -922,7 +923,7 @@ static float nvqDotProduct8bit(MemorySegmentVectorFloat vector, MemorySegmentByt
for (int i = vectorizedLength; i < quantizedVector.length(); i++) {
value2 = Byte.toUnsignedInt(quantizedVector.get(i));
value2 = Math.fma(logisticScale, value2, logisticBias);
value2 = logitNQT(value2, scaledAlpha, scaledX0);
value2 = logitNQT(value2, invScaledAlpha, scaledX0);
dotProd = Math.fma(vector.get(i), value2, dotProd);
}

Expand Down Expand Up @@ -953,10 +954,10 @@ static float[] nvqCosine8bit(MemorySegmentVectorFloat vector, MemorySegmentByteS
var byteArr = ByteVector.fromMemorySegment(ByteVector.SPECIES_PREFERRED, quantizedVector.get(), i, ByteOrder.LITTLE_ENDIAN);

for (int j = 0; j < 4; j++) {
var va = FloatVector.fromMemorySegment(FloatVector.SPECIES_PREFERRED, vector.get(), i + floatStep * j, ByteOrder.LITTLE_ENDIAN);
var va = FloatVector.fromMemorySegment(FloatVector.SPECIES_PREFERRED, vector.get(), vector.offset(i + floatStep * j), ByteOrder.LITTLE_ENDIAN);
var vb = nvqDequantize8bit(byteArr, invScaledAlpha, scaledX0, logisticScale, logisticBias, j);

var vCentroid = FloatVector.fromMemorySegment(FloatVector.SPECIES_PREFERRED, centroid.get(), i + floatStep * j, ByteOrder.LITTLE_ENDIAN);
var vCentroid = FloatVector.fromMemorySegment(FloatVector.SPECIES_PREFERRED, centroid.get(), centroid.offset(i + floatStep * j), ByteOrder.LITTLE_ENDIAN);
vb = vb.add(vCentroid);

vsum = va.fma(vb, vsum);
Expand All @@ -972,7 +973,7 @@ static float[] nvqCosine8bit(MemorySegmentVectorFloat vector, MemorySegmentByteS
for (int i = vectorizedLength; i < vector.length(); i++) {
value2 = Byte.toUnsignedInt(quantizedVector.get(i));
value2 = Math.fma(logisticScale, value2, logisticBias);
value2 = logitNQT(value2, scaledAlpha, scaledX0) + centroid.get(i);
value2 = logitNQT(value2, invScaledAlpha, scaledX0) + centroid.get(i);
sum = Math.fma(vector.get(i), value2, sum);
bMagnitude = Math.fma(value2, value2, bMagnitude);
}
Expand Down Expand Up @@ -1012,6 +1013,6 @@ static void nvqShuffleQueryInPlace8bit(MemorySegmentVectorFloat vector) {
}

//---------------------------------------------
// NVQ quantization instructions end here
// NVQ instructions end here
//---------------------------------------------
}
Original file line number Diff line number Diff line change
Expand Up @@ -1104,7 +1104,7 @@ static float nvqSquareDistance8bit(ArrayVectorFloat vector, ArrayByteSequence qu
float value2, diff;
for (int i = vectorizedLength; i < quantizedVector.length(); i++) {
value2 = Byte.toUnsignedInt(quantizedVector.get(i));
value2 = logisticScale * value2 + logisticBias;
value2 = Math.fma(logisticScale, value2, logisticBias);
value2 = logitNQT(value2, invScaledAlpha, scaledX0);
diff = vector.get(i) - value2;
squaredSum += MathUtil.square(diff);
Expand Down
Loading