Skip to content

Projects prepared for Financial Econometrics II classes at Warsaw School of Economics using GNU R

License

Notifications You must be signed in to change notification settings

jcierocki/financial-econometrics-R

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

13 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Financial Econometrics R projects

Projects prepared for Financial Econometrics II classes at Warsaw School of Economics using GNU R

Project I - analysis of the Dutch government bond's yield

Introduction

In this report we're going to:

  • analyse the Dutch bond's yield,
  • model them using ARIMA and VAR,
  • analyse the properties of the estimated models from the econometric point of view,
  • calibrate models to obtain 1-period forecasts,
  • measure the out-of-sample accuracy,
  • compare future forecasts with those published by the EU Commission.

Initial analysis

In this chapter we're going to analyse the available data, focusing on the Dutch bonds yield series integration and (partial) autocorrelation.

Raw data plot

ts plot

Autocorrelation

ts plot

ts plot

The above plots are typical for AR(1) (or equivalently infinite MA) process but let's notice that the partial autocorrelation for lag 1 is in fact equal to zero which suggests non-stationarity and clearly makes modelling this series, without any transformation, pointless.

Tests for stationarity

We're going to pursue Phillips-Perron (null hypothesis = non-stationary) and KPSS (null hypothesis = stationary) tests. Dickey-Fuler test would be omitted as the PP test is its extension.

The critical level of significance is usually assumed at 0.05, but in our analysis we're going to treat p-values between 0.01 and 0.1 as not fully conclusive (nfc).

On raw series we've obtained:

  • PP test p-value = 0.08239 ~ null (non-stationary, nfc)
  • KPSS test p-value = 0.01 ~ alternative (non-stationary)

On first differences series we've obtained:

  • PP test p-value = 0.01 ~ alternative (stationary)
  • KPSS test p-value = 0.1 ~ null (stationary)

The results suggest that the process is actually integrated at level 1, and the models for the first differences should be used.

Autocorrelation of first differences

ts plot

ts plot

ACF for the first differences looks pretty random, with the majority of the lags not being significantly correlated. A partial autocorrelation is significant for levels 1 and 7, and because of that we will set the maximum AR lag at 7 while calibrating the model.

ARIMA models

We're now going to calibrate and estimate ARIMA model using the iterative algorithm proposed by Rob Hyndman (2008). We will disable the drift, set the order of differentiation (d) at 1, and the initial p and q values at 7 and 0, as we expect that the ARIMA(7,1,0) would best fits the data. The dataset is enough large (3908 observations), so we will use AIC information criteria instead of AICc.

p,d,q aic
7,1,0 -13888.93
7,1,1 -13886.92
0,1,1 -13886.66
1,1,0 -13886.51
6,1,1 -13881.67
0,1,0 -13881.29

The results met our expectations when it comes to the best model - ARIMA(7,1,0). Unfortunately the differences between the ARIMA(0,1,0), equivalent to random walk, and the other models are very insignificant.

Obtained ARIMA(7,1,0) model has the following specification:

coefficient estimate p-value
ar1 0.0445 0.0054
ar2 -0.0124 0.4398
ar3 -0.0158 0.3241
ar4 0.0147 0.3594
ar5 -0.0216 0.1778
ar6 0.0112 0.4844
ar7 -0.0509 0.0015

and measures:

measure value
LogLik 6952.4671
AIC -13888.9342
BIC -13838.7700
RMSE 0.0408

Its IRF looks like:

ts plot

showing that the impulse expires in approximately 3 weeks (15 business days) with the higher variance along first 8 days.

In the further analysis we're going to compare the following ARIMA models:

  • 7,1,0
  • 1,1,0
  • 0,1,0 (RW)

We won't use ARIMA(0,1,1) due to its' property of impulse vanishing after 1 period (day) leaving constant differences same for all horizons of forecast which we assume to be not sufficient solution for long-term prediction.

VAR models

This sections needs to be further developed. Related code is finished, see analysis.R.

About

Projects prepared for Financial Econometrics II classes at Warsaw School of Economics using GNU R

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages