- This repository is the official implementation of EBEN.
- Visit the project page to listen to audios and visualize some spectrograms.
- Quick start on the project thanks to the Colab demo.
pip install -r requirements.txt
Download French Librispeech
wget https://dl.fbaipublicfiles.com/mls/mls_french.tar.gz
tar xvf mls_french.tar.gz
rm mls_french.tar.gz
Option 1: use the pre-trained French model discussed in the article
You already have it in the project: generator.ckpt
, only 7Mo.
python train.py
It will create/refresh generator_retrained.ckpt
at the end of each epoch.
python test.py
Our model achieves the following performance on Bandwidth Extension.
Speech\Metrics | PESQ | SI-SDR | STOI | MUSHRA-U (88 participants) |
MUSHRA-Q (82 participants) |
Gen params | Dis params |
---|---|---|---|---|---|---|---|
Simulated In-ear | 2.42 (0.34) | 8.4 (3.7) | 0.83 (0.05) | 51 (29) | 24 (18) | ||
Audio U-net | 2.24 (0.49) | 11.9 (3.7) | 0.87 (0.04) | 60 (26) | 33 (18) | 71.0 M | |
Hifi-GAN v3 | 1.32 (0.16) | -25.1 (11.4) | 0.78 (0.04) | 40 (23) | 36 (18) | 1.5 M | 70.7 M |
Seanet | 1.92 (0.48) | 11.1 (3.0) | 0.89 (0.04) | 73 (13) | 78 (12) | 8.3 M | 56.6 M |
Streaming-Seanet | 2.01 (0.46) | 11.2 (3.6) | 0.89 (0.04) | 66 (20) | 61 (14) | 0.7 M | 56.6 M |
EBEN (ours) | 2.08 (0.45) | 10.9 (3.3) | 0.89 (0.04) | 73 (14) | 76 (14) | 1.9 M | 26.5 M |
In the above Table: format is median (interquartile range). Significantly best values (acceptance=0.05) are in bold.
@ARTICLE{hauret2023configurable_eben_IEEE_TASLP,
author={Hauret, Julien and Joubaud, Thomas and Zimpfer, V{\'e}ronique and Bavu, {\'E}ric},
journal={IEEE/ACM Transactions on Audio, Speech, and Language Processing},
title={Configurable EBEN: Extreme Bandwidth Extension Network to Enhance Body-Conducted Speech Capture},
year={2023},
volume={31},
number={},
pages={3499-3512},
doi={10.1109/TASLP.2023.3313433}}
@inproceedings{hauret2023eben,
title={EBEN: Extreme bandwidth extension network applied to speech signals captured with noise-resilient body-conduction microphones},
author={Hauret, Julien and Joubaud, Thomas and Zimpfer, V{\'e}ronique and Bavu, {\'E}ric},
booktitle={ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)},
pages={1--5},
year={2023},
organization={IEEE}
doi={10.1109/ICASSP49357.2023.10096301}}
}