Skip to content

Depth from a single RGB image using crowd-sourcing relative-depth datasets. The pytorch implementation of the NIPS paper: Single-Image Depth Perception in the Wild.

Notifications You must be signed in to change notification settings

jimchenhub/relative-depth-using-pytorch

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

71 Commits
 
 
 
 
 
 
 
 

Repository files navigation

relative-depth-using-pytorch

The pytorch implementation of the NIPS paper:

Single-Image Depth Perception in the Wild, Neural Information Processing Systems (NIPS).

Setup

1.Install pyTorch as described in http://pytorch.org.

  1. Clone this repo.

     git clone https://github.com/yifjiang/relative-depth-using-pytorch.git
    
  2. Download and extract the DIW dataset from the project site. Download and extract DIW_test.tar.gz and DIW_train_val.tar.gz into 2 folders. Run the following command to download and extract DIW_Annotations.tar.gz. Then modify the filepath to images in DIW_test.csv, DIW_train.csv and DIW_val.csv to be the absolute file path where you extracted DIW_test.tar.gz and DIW_train_val.tar.gz.

     cd relative_depth
     mkdir data
     cd data
     wget https://vl-lab.eecs.umich.edu/data/nips2016/DIW_Annotations_splitted.tar.gz
     tar -xzf DIW_Annotations_splitted.tar.gz
     rm DIW_Annotations_splitted.tar.gz
    

Training and evaluating the networks

Testing on pre-trained models

Please first run the following commands to download the test data from our processed NYU dataset:

cd relative_depth
wget https://vl-lab.eecs.umich.edu/data/nips2016/data.tar.gz
tar -xzf data.tar.gz
rm data.tar.gz
cd data
python convert_csv_2_h5.py -i 750_train_from_795_NYU_MITpaper_train_imgs_800_points_resize_240_320.csv
python convert_csv_2_h5.py -i 45_validate_from_795_NYU_MITpaper_train_imgs_800_points_resize_240_320.csv

Then change directory into /relative_depth/src/experiment.

  1. To evaluate the pre-trained model Ours(model trained on the NYU labeled training subset) on the NYU dataset, run the following command:

     python test_model_on_NYU.py -num_iter 1000 -prev_model_file ../results/Best_model_period1.pt -mode test -crop 8
    
  2. To test on a single image, we provide a handy script test_on_one_image.py:

     python test_on_one_image.py -prev_model_file ../results/Best_model_period1.pt -input_image ../../data/4.png -output_image ../../data/4-out.png
    

    and also a cpu version of it (this script is confirmed to be able to run with pyTorch ver 0.1.12 and torchvision ver 0.1.18):

     python test_on_one_image_cpu.py -prev_model_file ../results/Best_model_period1.pt -input_image ../../data/4.png -output_image ../../data/4-out.png
    

Training

Please first change directory into /relative_depth/src/experiment.

To train the model Ours(model trained on the NYU labeled training subset), please run the following command:

python main.py -lr 0.001 -bs 4 -it 100000 -t_depth_file 750_train_from_795_NYU_MITpaper_train_imgs_800_points_resize_240_320.csv -v_depth_file 45_validate_from_795_NYU_MITpaper_train_imgs_800_points_resize_240_320.csv -rundir ./results

About

Depth from a single RGB image using crowd-sourcing relative-depth datasets. The pytorch implementation of the NIPS paper: Single-Image Depth Perception in the Wild.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%