27训练CGAN
cgan-mnist1.py
line91 model_name = 'cgan27' #保存的模型名前缀
line138 y_sample[:, 2] = 1
line118 saver.restore(sess, 'checkpoints/27/cgan27')
line134 save(saver, sess,'./checkpoints/27')
python cgan-mnist1.py --epoch 50000 --nlog 1000 --data ./data/27/mnist_data_27 --outpath ./out/27/T_50000
python cgan-mnist1.py --epoch 20000 --nlog 400 --data ./data/27/mnist_data_72 --outpath ./out/27/F_20000 --load True
python cgan-mnist1.py --epoch 8000 --nlog 160 --data ./data/27/mnist_data_27 --outpath ./out/27/T_8000 --load True
python cgan-mnist1.py --epoch 3200 --nlog 64 --data ./data/27/mnist_data_72 --outpath ./out/27/F_3200 --load True
python cgan-mnist1.py --epoch 1280 --nlog 25 --data ./data/27/mnist_data_27 --outpath ./out/27/T_1280 --load True
python cgan-mnist1.py --epoch 512 --nlog 10 --data ./data/27/mnist_data_72 --outpath ./out/27/F_512 --load True
46训练CGAN
cgan-mnist1.py
line91 model_name = 'cgan46' #保存的模型名前缀
line138 y_sample[:, 4] = 1
line118 saver.restore(sess, 'checkpoints/46/cgan46')
line134 save(saver, sess,'./checkpoints/46')
python cgan-mnist1.py --epoch 50000 --nlog 1000 --data ./data/46/mnist_data_46 --outpath ./out/46/T_50000
python cgan-mnist1.py --epoch 20000 --nlog 400 --data ./data/46/mnist_data_64 --outpath ./out/46/F_20000 --load True
python cgan-mnist1.py --epoch 8000 --nlog 160 --data ./data/46/mnist_data_46 --outpath ./out/46/T_8000 --load True
python cgan-mnist1.py --epoch 3200 --nlog 64 --data ./data/46/mnist_data_64 --outpath ./out/46/F_3200 --load True
python cgan-mnist1.py --epoch 1280 --nlog 25 --data ./data/46/mnist_data_46 --outpath ./out/46/T_1280 --load True
python cgan-mnist1.py --epoch 512 --nlog 10 --data ./data/46/mnist_data_64 --outpath ./out/46/F_512 --load True
49训练CGAN
cgan-mnist1.py
line91 model_name = 'cgan49' #保存的模型名前缀
line138 y_sample[:, 4] = 1
line118 saver.restore(sess, 'checkpoints/49/cgan49')
line134 save(saver, sess,'./checkpoints/49')
python cgan-mnist1.py --epoch 50000 --nlog 1000 --data ./data/49/mnist_data_49 --outpath ./out/49/T_50000
python cgan-mnist1.py --epoch 20000 --nlog 400 --data ./data/49/mnist_data_94 --outpath ./out/49/F_20000 --load True
python cgan-mnist1.py --epoch 8000 --nlog 160 --data ./data/49/mnist_data_49 --outpath ./out/49/T_8000 --load True
python cgan-mnist1.py --epoch 3200 --nlog 64 --data ./data/49/mnist_data_94 --outpath ./out/49/F_3200 --load True
python cgan-mnist1.py --epoch 1280 --nlog 25 --data ./data/49/mnist_data_49 --outpath ./out/49/T_1280 --load True
python cgan-mnist1.py --epoch 512 --nlog 10 --data ./data/49/mnist_data_94 --outpath ./out/49/F_512 --load True
68训练CGAN
cgan-mnist1.py
line91 model_name = 'cgan68' #保存的模型名前缀
line138 y_sample[:, 6] = 1
line118 saver.restore(sess, 'checkpoints/68/cgan68')
line134 save(saver, sess,'./checkpoints/68')
python cgan-mnist1.py --epoch 50000 --nlog 1000 --data ./data/68/mnist_data_68 --outpath ./out/68/T_50000
python cgan-mnist1.py --epoch 20000 --nlog 400 --data ./data/68/mnist_data_86 --outpath ./out/68/F_20000 --load True
python cgan-mnist1.py --epoch 8000 --nlog 160 --data ./data/68/mnist_data_68 --outpath ./out/68/T_8000 --load True
python cgan-mnist1.py --epoch 3200 --nlog 64 --data ./data/68/mnist_data_86 --outpath ./out/68/F_3200 --load True
python cgan-mnist1.py --epoch 1280 --nlog 25 --data ./data/68/mnist_data_68 --outpath ./out/68/T_1280 --load True
python cgan-mnist1.py --epoch 512 --nlog 10 --data ./data/68/mnist_data_86 --outpath ./out/68/F_512 --load True
生成27、46、49、68触发集
create_tirgger.py line94 y_sample[:, 2] = 1 改成你要生成的图片one-hot编码
python create_trigger.py --ckpt checkpoints/27/cgan27 --outpath ./out/27/trigger
create_tirgger.py line94 y_sample[:, 4] = 1 改成你要生成的图片one-hot编码
python create_trigger.py --ckpt checkpoints/46/cgan46 --outpath ./out/46/trigger
python create_trigger.py --ckpt checkpoints/49/cgan49 --outpath ./out/49/trigger
create_tirgger.py line94 y_sample[:, 6] = 1 改成你要生成的图片one-hot编码
python create_trigger.py --ckpt checkpoints/68/cgan68 --outpath ./out/68/trigger
model/mnist_cnn.h5 未嵌入水印的深度学习模型
chaos.py 混搭标注
line37 将路径改为要混沌标记图片文件夹的路径
line39 保存路径
27 x=3.999 u=0.88 interval=0.5
46 x=3.999 u=0.88 interval=0.5
49 x=3.989 u=0.87 interval=0.4
68 x=3.989 u=0.87 interval=0.4
将触发集和训练集混合到一起形成新的数据集来训练模型嵌入水印的能力
Mnist.h5 --val_accuracy 0.9943
Mnist64.h5 --val_accuracy 0.9934 --extraction 1
Mnist128.h5 --val_accuracy 0.9946 --extraction 1
Mnist256.h5 --val_accuracy 0.9934 --extraction 1
微调
val_acc 0.9926 32o 0.9688 32u 0.875
val_acc 0.9929 64o 0.96 64u 1.0
val_acc 0.9932 128o 0.99 128u 1.0
覆盖
64 -val_accuracy 0.9934 extraction 1.0 1.0 size 12.52MB
0.1 -val_accuracy 0.9928 extraction 1.0 1.0 size 10.88MB
0.2 -val_accuracy 0.9922 extraction 1.0 1.0 size 9.98MB
0.3 -val_accuracy 0.9921 extraction 0.9375 1.0 size 9.08MB
0.4 -val_accuracy 0.9924 extraction 0.9375 0.96875 size 8.10MB
0.5 -val_accuracy 0.9918 extraction 0.90625 0.90625 size 7.08MB
128 -val_accuracy 0.9946 extraction 1.0 1.0 size 12.52MB
0.1 -val_accuracy 0.9940 extraction 1.0 1.0 size 10.90MB
0.2 -val_accuracy 0.9937 extraction 1.0 1.0 size 10.03MB
0.3 -val_accuracy 0.9937 extraction 1.0 1.0 size 9.12MB
0.4 -val_accuracy 0.9937 extraction 1.0 1.0 size 8.14MB
0.5 -val_accuracy 0.9934 extraction 1.0 0.96875 size 7.11MB
256 -val_accuracy 0.9934 extraction 1.0 1.0 size 12.52MB
0.1 -val_accuracy 0.9933 extraction 1.0 1.0 size 10.93MB
0.2 -val_accuracy 0.9930 extraction 1.0 1.0 size 10.10MB
0.3 -val_accuracy 0.9930 extraction 1.0 1.0 size 9.16MB
0.4 -val_accuracy 0.9929 extraction 1.0 1.0 size 8.14MB
0.5 -val_accuracy 0.9917 extraction 0.9844 0.968751 size 7.13MB
Overwriting
chaos.py 混搭标注
line37 将路径改为要混沌标记图片文件夹的路径
line39 保存路径
27 x=3.900 u=0.91 interval=0.45
46 x=3.900 u=0.91 interval=0.45
49 x=3.900 u=0.91 interval=0.45
68 x=3.900 u=0.91 interval=0.45
128
owner_extraction 1.0 user_extraction 0.9843 wm 0.5781 acc 0.9940
owner_extraction 0.626 user_extraction 0.625 wm 0.7578 acc 0.8828
64
owner_extraction 0.75 user_extraction 1.0 wm 0.5781 acc 0.9918
owner_extraction 0.46875 user_extraction 0.5937 wm 0.6718 acc 0.8916
256
owner_extraction 1.0 user_extraction 1.0 wm 0.5936 acc 0.9934
owner_extraction 0.6640 user_extraction 0.6484 wm 0.6445 acc 0.9017
128 -val_accuracy 0.9934 extraction 1.0 1.0 size 12.52MB
0.1 -val_accuracy 0.9928 extraction 1.0 1.0 size 10.88
0.2 -val_accuracy 0.9922 extraction 1.0 1.0 size 9.98MB
0.3 -val_accuracy 0.9921 extraction 0.9375 1.0 size 9.08MB
0.4 -val_accuracy 0.9924 extraction 0.9375 0.96875 size 8.10MB
0.4 -val_accuracy 0.9918 extraction 0.90625 0.90625 size 7.08MB
-
Notifications
You must be signed in to change notification settings - Fork 0
jmkill1/CGAN_MNIST
Folders and files
Name | Name | Last commit message | Last commit date | |
---|---|---|---|---|
Repository files navigation
About
No description, website, or topics provided.
Resources
Stars
Watchers
Forks
Releases
No releases published
Packages 0
No packages published