This repo is for self-learning on 'image classification' methods, using deep learning. I consists for 5 different models:
- WideResNet
- DenseNet
- Dual Path Network (DualPathNet)
- ResNet w/ Shake-Shake regularization (96 Dims)
- ResNet w/ Shake-Shake regularization (64 Dims)
The models are trained using following hardware:
- 1080 ti (dual-GPU is ready, but could not use due to error issue)
- Ryzen 2700X
- 64GB RAM
Here are some benchmarks of the models I trained.
Model Name | # of Parameters | Accuracy (Prec@1) | Time Estimated (Not Measured) | # of Epochs |
---|---|---|---|---|
WideResNet | 36478906 | 93.2775 | Around 7 Hrs | 200 |
DenseNet | 768730 | 93.77 | Around 3~4 Hrs | 300 |
DualPathNet | 47751450 | 93.21 | Around 6 Hrs (Not sure) | 200 |
ResNet w/ Shake-Shake (96d) | 26330026 | 93.7275 | Around 40 Hrs | 1800 |
ResNet w/ Shake-Shake (96d) | 11708362 | 93.725 | Around 25 Hrs | 1800 |
! Notice: Fashion-MNIST dataset has new ratio (Train 30000, Test 40000) !
Seed # | Epochs | Mini-Batch Size | Initial lr | Momentum | Nesterov |
---|---|---|---|---|---|
40000 | 200 | 256 | 0.1 | 0.9 | True |
Weight Decay Rate | # of Layers | Widen factor | Drop rate | Augment Method |
---|---|---|---|---|
5e-4 | 28 | 10 | 0 | Random Crop & Flip |
Seed # | Epochs | Mini-Batch Size | Initial lr | Momentum | Nesterov |
---|---|---|---|---|---|
40000 | 300 | 128 | 0.1 | 0.9 | True |
Weight Decay Rate | # of Layers | Growth Rate | Reduction | Bottleneck | Drop rate | Augment Method |
---|---|---|---|---|---|---|
1e-4 | 100 | 12 | 0.5 | True | 0 | Random Crop & Flip |
Seed # | Epochs | Mini-Batch Size | Initial lr | Momentum | Nesterov |
---|---|---|---|---|---|
30000 | 200 | 256 | 0.1 | 0.9 | False |
Weight Decay Rate | # of Layers | # of Blocks | Filters | Growth rate | Augment Method |
---|---|---|---|---|---|
5e-4 | 100 | 4, 4, 4 | 160, 320, 640 | 16, 32, 64 | Random Crop & Flip |
Seed # | Cutout Size | Cutout Probability | Cutout Inside |
---|---|---|---|
30000 | 16 | 1.0 | False |
Epochs | Mini-Batch Size | Initial lr | Momentum | Nesterov | Weight Decay Rate |
---|---|---|---|---|---|
1800 | 256 | 0.1 | 0.9 | False | 1e-4 |
# of Layers | Minimum lr | # of Base Channels | Feed-forward regularization | Back-prop regularization | Test regularization |
---|---|---|---|---|---|
26 | 0 | 96 | Shake | Shake | Image |
Seed # | Cutout Size | Cutout Probability | Cutout Inside |
---|---|---|---|
30000 | 16 | 1.0 | False |
Epochs | Mini-Batch Size | Initial lr | Momentum | Nesterov | Weight Decay Rate |
---|---|---|---|---|---|
1800 | 256 | 0.1 | 0.9 | False | 1e-4 |
# of Layers | Minimum lr | # of Base Channels | Feed-forward regularization | Back-prop regularization | Test regularization |
---|---|---|---|---|---|
26 | 0 | 64 | Shake | Shake | Image |