Skip to content

Commit

Permalink
[Memory issue] Solve memory issue for building context (EvolvingLMMs-…
Browse files Browse the repository at this point in the history
…Lab#14)

* Update generation_kwargs in pope.yaml

* Update pope_doc_to_text function

* Remove unused variable in mmvet_process_results function

* Remove unused imports in utils.py

* Refactor get_chat_response function to include retries for API requests

* Update gpt_eval_model_name in lmms_eval/tasks/dc100_en.yaml and add retry logic in get_chat_response function

* Update prompt variable in lmms_eval tasks

* Refactor output_name variable in cli_evaluate function

* Fix logging message in mmvet_process_results function

* Update sleep time in get_chat_response function

* Merge commit 'b5ad3edceaeb5c234d3244f99aa49a6b4b4572a1'

* Refactor get_eval function to include retries

* Add token parameter to load_dataset function in gqa_doc_to_visual

* Refactor llava_process_results and llava_aggregation functions

* Remove unused function llava_aggregation

* Refractor llava-bench aggregation code

* Add logs and scripts to .gitignore, and set image_aspect_ratio to original in scienceqa.yaml

* Update generation parameters in scienceqa.yaml

* Solve memory issue for building context

* Solved gather result error

* Update lmms_eval scienceqa_img config

* Fixed nocaps store results

* Revise seedbench prompt

* Squashed commit of the following:

commit 5039565
Author: Zhang Peiyuan <[email protected]>
Date:   Wed Jan 24 14:07:36 2024 +0800

    add mmmu (EvolvingLMMs-Lab#15)

    * add mmme

    * black

commit bbcee02
Author: Li Bo <[email protected]>
Date:   Wed Jan 24 10:00:33 2024 +0800

    [Datasets] Add four internal evaluation datasets (EvolvingLMMs-Lab#13)

    * Update generation_kwargs in pope.yaml

    * Update pope_doc_to_text function

    * Remove unused variable in mmvet_process_results function

    * Remove unused imports in utils.py

    * Refactor get_chat_response function to include retries for API requests

    * Update gpt_eval_model_name in lmms_eval/tasks/dc100_en.yaml and add retry logic in get_chat_response function

    * Update prompt variable in lmms_eval tasks

    * Refactor output_name variable in cli_evaluate function

    * Fix logging message in mmvet_process_results function

    * Update sleep time in get_chat_response function

    * Merge commit 'b5ad3edceaeb5c234d3244f99aa49a6b4b4572a1'

    * Refactor get_eval function to include retries

    * Add token parameter to load_dataset function in gqa_doc_to_visual

    * Refactor llava_process_results and llava_aggregation functions

commit b5ad3ed
Author: kcz358 <[email protected]>
Date:   Tue Jan 23 19:17:40 2024 +0800

    [Dataset] Add SEED-Bench, TextCaps, NoCaps (EvolvingLMMs-Lab#12)

    * Change coco from print to logger

    * Add llava loglikelihood

    * Add Nocaps support

    * Fix pass through function

    * Add textcaps support

    * Fix textcaps eval image_id

    * Add seedbench support

    * Add seedbench ppl evaluation

    * black lint

commit b5984ac
Author: Li Bo <[email protected]>
Date:   Tue Jan 23 19:17:12 2024 +0800

    [Datasets] Added POPE and Aligned. (EvolvingLMMs-Lab#11)

    * Update generation_kwargs in pope.yaml

    * Update pope_doc_to_text function

---------

Co-authored-by: Bo Li <[email protected]>
  • Loading branch information
kcz358 and Luodian authored Jan 24, 2024
1 parent 5039565 commit 8d28fde
Show file tree
Hide file tree
Showing 13 changed files with 187 additions and 96 deletions.
3 changes: 2 additions & 1 deletion .gitignore
Original file line number Diff line number Diff line change
Expand Up @@ -16,4 +16,5 @@ temp
# IPython
profile_default/
ipython_config.py
logs/
logs/
scripts/
2 changes: 1 addition & 1 deletion lmms_eval/api/instance.py
Original file line number Diff line number Diff line change
Expand Up @@ -5,7 +5,6 @@
@dataclass
class Instance:
request_type: Literal["loglikelihood", "loglikelihood_rolling", "generate_until"]
doc: dict
arguments: tuple
idx: int
metadata: Tuple[str, int, int] = field(default_factory=lambda: (None, None, None)) # TODO: better typehints here
Expand All @@ -16,6 +15,7 @@ class Instance:
task_name: str = None
doc_id: str = None
repeats: str = None
doc: dict = None

def __post_init__(self) -> None:
# unpack metadata field
Expand Down
67 changes: 37 additions & 30 deletions lmms_eval/api/task.py
Original file line number Diff line number Diff line change
@@ -1,11 +1,13 @@
import abc
from dataclasses import dataclass, field, asdict

import itertools
import os
import re
import ast
import logging
import random
from tqdm import tqdm

import datasets
import numpy as np
Expand Down Expand Up @@ -338,38 +340,38 @@ def build_all_requests(self, limit=None, rank=None, world_size=None) -> None:
eval_logger.info(f"Building contexts for task on rank {rank}...")

instances = []
for doc_id, doc in utils.create_iterator(enumerate(docs), rank, world_size, limit):
doc_id_iterator = utils.create_iterator([i for i in range(len(docs))], rank, world_size, limit)
doc_id_iterator, doc_id_iterator_counting = itertools.tee(doc_id_iterator)
total_docs = sum(1 for _ in doc_id_iterator_counting)
pbar = tqdm(total=total_docs, desc="Building context")
for doc_id in doc_id_iterator:
# sample fewshot context #TODO: need to offset doc_id by rank now!
fewshot_ctx = self.fewshot_context(
doc,
0 if self.config.num_fewshot is None else self.config.num_fewshot,
)
fewshot_ctx = self.fewshot_context(doc_id, 0 if self.config.num_fewshot is None else self.config.num_fewshot, self.config.training_split if self.has_training_docs() else split)

# TODO: we should override self.config.repeats if doing greedy gen so users don't waste time+compute
inst = self.construct_requests(doc=doc, ctx=fewshot_ctx, metadata=(self.config["task"], doc_id, self.config.repeats), split=split)
inst = self.construct_requests(doc_id=doc_id, ctx=fewshot_ctx, metadata=(self.config["task"], doc_id, self.config.repeats), split=split)

if not isinstance(inst, list):
inst = [inst]

instances.extend(inst)
pbar.update(1)

self._instances = instances
assert len(self._instances) != 0, "task.build_requests() did not find any docs!"

@abc.abstractmethod
def construct_requests(self, doc, ctx, **kwargs):
def construct_requests(self, doc_id, ctx, **kwargs):
"""Uses RequestFactory to construct Requests and returns an iterable of
Requests which will be sent to the LMM.
:param doc:
The document as returned from training_docs, validation_docs, or test_docs.
:param doc_id: int
The index of a document within `self.test_docs()` or `self.validation_docs()`,
whichever is the main split used.
:param ctx: str
The context string, generated by fewshot_context. This includes the natural
language description, as well as the few shot examples, and the question
part of the document for `doc`.
:param doc_idx: int
The index of a document within `self.test_docs()` or `self.validation_docs()`,
whichever is the main split used.
:param repeats: int
TODO: update this docstring
The number of times each instance in a dataset is inferred on. Defaults to 1,
Expand Down Expand Up @@ -421,18 +423,21 @@ def count_words(cls, doc):
@utils.positional_deprecated
def fewshot_context(
self,
doc,
doc_id,
num_fewshot,
split,
rnd=random.Random(1234),
description=None,
):
"""Returns a fewshot context string that is made up of a prepended description
(if provided), the `num_fewshot` number of examples, and an appended prompt example.
:param doc: str
The document as returned from training_docs, validation_docs, or test_docs.
:param doc_id: int
The document id as returned from training_docs, validation_docs, or test_docs.
:param num_fewshot: int
The number of fewshot examples to provide in the returned context string.
:param split: str
The split of the document to retrieve from the dataset
:param rnd: random.Random
The pseudo-random number generator used to randomly sample examples.
WARNING: This is currently a required arg although it's optionalized with a default `None`.
Expand All @@ -444,6 +449,7 @@ def fewshot_context(
assert rnd is not None, "A `random.Random` generator argument must be provided to `rnd`"

description = description if description else ""
doc = self.dataset[split][doc_id]

if num_fewshot == 0:
labeled_examples = ""
Expand Down Expand Up @@ -676,18 +682,18 @@ def fewshot_docs(self):
return super().fewshot_docs()

@utils.positional_deprecated
def fewshot_context(self, doc, num_fewshot):
def fewshot_context(self, doc_id, num_fewshot, split):
"""Returns a fewshot context string that is made up of a prepended description
(if provided), the `num_fewshot` number of examples, and an appended prompt example.
:param doc: str
The document as returned from training_docs, validation_docs, or test_docs.
:param doc_id: str
The document id as returned from training_docs, validation_docs, or test_docs.
:param num_fewshot: int
The number of fewshot examples to provide in the returned context string.
:returns: str
The fewshot context.
"""

doc = self.dataset[split][doc_id]
if num_fewshot == 0:
# always prepend the (possibly empty) task description
labeled_examples = self.config.description
Expand Down Expand Up @@ -840,26 +846,28 @@ def doc_to_choice(self, doc: Any) -> List[str]:
else:
raise TypeError

def construct_requests(self, doc: dict, ctx: str, **kwargs) -> Union[List[Instance], Instance]:
def construct_requests(self, doc_id: int, ctx: str, **kwargs) -> Union[List[Instance], Instance]:
split = kwargs.get("split")
kwargs.pop("split")
if self.OUTPUT_TYPE == "loglikelihood":
arguments = (ctx, self.doc_to_target(doc), self.doc_to_visual, kwargs.get("metadata")[1], self.config.task, kwargs.get("split"))
arguments = (ctx, self.doc_to_target, self.doc_to_visual, doc_id, self.config.task, split)
elif self.OUTPUT_TYPE == "loglikelihood_rolling":
arguments = (self.doc_to_target(doc),)
arguments = (self.doc_to_target,)
elif self.OUTPUT_TYPE == "multiple_choice":
doc = self.dataset[split][doc_id]
choices = self.doc_to_choice(doc)
target_delimiter = self.config.target_delimiter
if self.multiple_input:
# If there are multiple inputs, choices are placed in the ctx
cont = self.doc_to_target(doc)
arguments = [(ctx, f"{target_delimiter}{cont}", self.doc_to_visual, kwargs.get("metadata")[1], self.config.task, kwargs.get("split")) for ctx in choices]
arguments = [(ctx, f"{target_delimiter}{cont}", self.doc_to_visual, doc_id, self.config.task, split) for ctx in choices]
else:
# Otherwise they are placed in the continuation
arguments = [(ctx, f"{target_delimiter}{cont}", self.doc_to_visual, kwargs.get("metadata")[1], self.config.task, kwargs.get("split")) for cont in choices]
kwargs.pop("split")
arguments = [(ctx, f"{target_delimiter}{cont}", self.doc_to_visual, doc_id, self.config.task, split) for cont in choices]
request_list = [
Instance(
request_type="loglikelihood",
doc=doc,
# doc=doc,
arguments=arg,
idx=i,
**kwargs,
Expand All @@ -878,7 +886,7 @@ def construct_requests(self, doc: dict, ctx: str, **kwargs) -> Union[List[Instan
[
Instance(
request_type="loglikelihood",
doc=doc,
# doc=doc,
arguments=("", "{}".format(choice)),
idx=i,
**kwargs,
Expand All @@ -889,9 +897,8 @@ def construct_requests(self, doc: dict, ctx: str, **kwargs) -> Union[List[Instan
return request_list

elif self.OUTPUT_TYPE == "generate_until":
arguments = (ctx, self.config.generation_kwargs, self.doc_to_visual, kwargs.get("metadata")[1], self.config.task, kwargs.get("split"))
kwargs.pop("split")
return Instance(request_type=self.OUTPUT_TYPE, doc=doc, arguments=arguments, idx=0, **kwargs)
arguments = (ctx, self.config.generation_kwargs, self.doc_to_visual, doc_id, self.config.task, split)
return Instance(request_type=self.OUTPUT_TYPE, arguments=arguments, idx=0, **kwargs)

def process_results(self, doc, results):
if callable(self.config.process_results):
Expand Down
2 changes: 1 addition & 1 deletion lmms_eval/evaluator.py
Original file line number Diff line number Diff line change
Expand Up @@ -325,7 +325,7 @@ def evaluate(
"doc_id": doc_id,
"doc": {k: v for k, v in doc.items() if "image" not in k}, # do not include image
"target": target,
"arguments": [req.args[:2] for req in requests], # do not include image
"arguments": [tuple(a for a in req.args if isinstance(a, (int, str))) for req in requests], # do not include image
"resps": [req.resps for req in requests],
"filtered_resps": [req.filtered_resps[key] for req in requests],
}
Expand Down
3 changes: 2 additions & 1 deletion lmms_eval/models/llava.py
Original file line number Diff line number Diff line change
Expand Up @@ -145,8 +145,9 @@ def loglikelihood(self, requests: List[Instance]) -> List[Tuple[float, bool]]:
res = []
pbar = tqdm(total=len(requests), disable=(self.rank != 0), desc="Model Responding")

for contexts, continuation, doc_to_visual, doc_id, task, split in [reg.args for reg in requests]:
for contexts, doc_to_target, doc_to_visual, doc_id, task, split in [reg.args for reg in requests]:
# encode, pad, and truncate contexts for this batch
continuation = doc_to_target(self.task_dict[task][split][doc_id])
visuals = [doc_to_visual(self.task_dict[task][split][doc_id])]
visuals = self.flatten(visuals)
if visuals:
Expand Down
12 changes: 6 additions & 6 deletions lmms_eval/tasks/llava-bench-coco/llava-bench-coco.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -17,17 +17,17 @@ generation_kwargs:
num_beams: 1
process_results: !function utils.llava_process_results
metric_list:
- metric: gpt_eval_llava_all
aggregation: !function utils.llava_all_aggregation
higher_is_better: true
- metric: gpt_eval_llava_conv
aggregation: !function utils.llava_aggregation
aggregation: !function utils.llava_conv_aggregation
higher_is_better: true
- metric: gpt_eval_llava_detail
aggregation: !function utils.llava_aggregation
aggregation: !function utils.llava_detail_aggregation
higher_is_better: true
- metric: gpt_eval_llava_complex
aggregation: !function utils.llava_aggregation
higher_is_better: true
- metric: gpt_eval_llava_all
aggregation: !function utils.llava_aggregation
aggregation: !function utils.llava_complex_aggregation
higher_is_better: true
metadata:
version: 0.0
Expand Down
Loading

0 comments on commit 8d28fde

Please sign in to comment.