forked from boschresearch/numerics_independent_neural_odes
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
248 lines (210 loc) · 8.97 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
# -*- coding: utf-8 -*-
# Copyright (c) 2020 Robert Bosch GmbH
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU Affero General Public License as published
# by the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Affero General Public License for more details.
#
# You should have received a copy of the GNU Affero General Public License
# along with this program. If not, see <https://www.gnu.org/licenses/>.
# Author: Katharina Ott, [email protected]
import argparse
import copy
import os
from typing import Generator
import torch
# noinspection PyProtectedMember
from torch.nn.modules.loss import _Loss
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
import data
import data.create_dataloader
from evaluate_with_dif_solver import evaluate_with_dif_solver
from options.experiment_options import ExperimentOptions
from options.initialize import initialize
from trainer.trainer import ModelTrainer
from util.helper_functions import inf_generator, return_order
from util.model_evaluation import calculate_accuracy, evaluate_model
from util.plot_results import plot_results
from util.step_adaption_algo import find_initial_step_size, adapt_step_size
from util.tol_adaption_algo import adapt_tol
class TrainModel:
def __init__(self):
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
parser = initialize(parser)
opts, unknown = parser.parse_known_args()
self.opts = ExperimentOptions(opts)
self.data_generator = self._get_data_generator()
self.test_dataloader = self._get_test_dataloader()
self.train_acc = None
self.test_acc = None
self.nfe_f = None
self.nfe_b = None
self.loss = None
self.acc_log = {
"train": torch.empty(self.opts.niter),
"test": torch.empty(self.opts.niter),
}
self.loss_log = torch.empty(self.opts.niter)
self.nfe_log = {
"nfe_f": torch.empty(self.opts.niter),
"nfe_b": torch.empty(self.opts.niter),
}
self.trainer = ModelTrainer(self.opts)
if self.opts.use_gpu:
self.trainer.model.cuda()
# By default the device is cpu
self.device = torch.device("cpu")
if self.opts.use_gpu:
self.device = torch.device("cuda:" + str(self.opts.gpu_ids[0]))
# Initialize the summary writer
if self.opts.use_tensorboard:
self.writer = SummaryWriter(log_dir=self.opts.tensorboard_dir)
def run(self):
torch.cuda.empty_cache()
# Set random seed
torch.manual_seed(self.opts.random_seed)
loss_function = torch.nn.CrossEntropyLoss().to(self.device)
# Time input for the ODE
t = torch.as_tensor([0.0, 1.0]).to(self.device)
print("Starting training....")
if self.opts.use_adaption_algo:
self._initialize_adaption_algo()
for current_iter in range(self.opts.niter):
self._iterate_one_training_step(current_iter, loss_function, t)
if self.opts.evaluate_with_dif_solver:
results = evaluate_with_dif_solver(
trainer=self.trainer,
test_dataloader=self.test_dataloader,
opts=self.opts,
device=self.device,
)
torch.save(
results,
os.path.join(
self.opts.experiment_dir,
f"eval_with_dif_solver_iter_{self.opts.niter - 1}.pt",
),
)
plot_results(self.opts)
def _get_data_generator(self) -> Generator:
# load the dataset
dataloader = data.create_dataloader.create_dataloader(self.opts)
print(
"\n{} dataloader of size {} was created\n".format(
self.opts.dataset.upper(), len(dataloader)
)
)
# Wrap pytorch's dataloader in a generator function
return inf_generator(dataloader)
def _get_test_dataloader(self) -> DataLoader:
test_opts = copy.deepcopy(self.opts)
test_opts.split = "test"
return data.create_dataloader.create_dataloader(test_opts)
def _initialize_adaption_algo(self):
x, _ = self.data_generator.__next__()
x = x.to(self.device)
if self.opts.fixed_step_solver:
step_size = find_initial_step_size(
mymodel=self.trainer.model,
batch_data=x,
order=return_order(self.opts.solver),
)
self.trainer.model.feature_ex_block.options["step_size"] = step_size
else:
tol = self.opts.initial_tol
self.trainer.model.feature_ex_block.tol = tol
def _iterate_one_training_step(
self, current_iter: int, loss_function: _Loss, t: torch.Tensor
):
self.trainer.model.train()
self.trainer.optimizer.zero_grad()
self.trainer.model.feature_ex_block.nfe = 0
x, y = self.data_generator.__next__()
x = x.to(self.device)
y = y.to(self.device)
logits = self.trainer.forward_one_step(x, t)
self.loss = loss_function(logits, y)
self.nfe_f = self.trainer.model.feature_ex_block.nfe
self.trainer.model.feature_ex_block.nfe = 0
self.loss.backward()
self.nfe_b = self.trainer.model.feature_ex_block.nfe
self.trainer.model.feature_ex_block.nfe = 0
self.train_acc = calculate_accuracy(
logits, y, self.opts.num_classes, self.opts.batch_size
)
if self.opts.evaluate_test_acc:
with torch.no_grad():
self.trainer.model.eval()
self.test_acc = evaluate_model(
self.trainer.model, self.test_dataloader, self.opts, self.device
)
self._save_current_state(current_iter)
if self.opts.use_adaption_algo:
self._apply_step_adaption_algo(current_iter, self.train_acc, x, y)
if self.opts.use_tensorboard:
self._create_tensorboard_logs(current_iter)
self._print_training_info(current_iter)
self.trainer.optimizer.step()
torch.cuda.empty_cache()
def _save_current_state(self, current_iter: int):
self.nfe_log["nfe_f"][current_iter] = self.nfe_f
self.nfe_log["nfe_b"][current_iter] = self.nfe_b
self.loss_log[current_iter] = self.loss.cpu().detach()
self.acc_log["train"][current_iter] = self.train_acc
if self.opts.evaluate_test_acc:
self.acc_log["test"][current_iter] = self.test_acc
torch.save(self.loss_log, os.path.join(self.opts.experiment_dir, "loss_log.pt"))
torch.save(self.acc_log, os.path.join(self.opts.experiment_dir, "acc_log.pt"))
torch.save(self.nfe_log, os.path.join(self.opts.experiment_dir, "nfe_log.pt"))
# Save the current model
if (current_iter + 1) % self.opts.model_checkpoint_freq == 0 or (
current_iter + 1
) == self.opts.niter:
self.trainer.checkpoint_model_state(current_iter, self.opts.checkpoints_dir)
def _create_tensorboard_logs(self, current_iter: int):
self.writer.add_scalar("ACC/train", self.train_acc, current_iter + 1)
self.writer.add_scalar("NFE/forward", self.nfe_f, current_iter + 1)
self.writer.add_scalar("NFE/backward", self.nfe_b, current_iter + 1)
def _print_training_info(self, current_iter: int):
print_str = "Iter {} \b\b\t NFE-F {:.2f} \t NFE-B {:.2f}" "\t Train Acc {:.3f}%"
print_vars = (current_iter + 1, self.nfe_f, self.nfe_b, self.train_acc)
if self.test_acc is not None:
print_str = print_str + "\t Test Acc {:.3f}%"
print_vars = print_vars + (self.test_acc,)
print(
print_str.format(*print_vars),
file=open(os.path.join(self.opts.experiment_dir, "output.txt"), "a"),
)
def _apply_step_adaption_algo(
self, current_iter: int, train_acc: float, x: torch.Tensor, y: torch.Tensor,
):
if (current_iter + 1) % self.opts.adaption_interval == 0:
if self.opts.fixed_step_solver:
adapt_step_size(
trainer=self.trainer,
train_solver_acc=train_acc,
x=x,
y=y,
opts=self.opts,
)
else:
adapt_tol(
trainer=self.trainer,
train_solver_acc=train_acc,
x=x,
y=y,
opts=self.opts,
train_solver_nfe_dict=self.nfe_log,
current_iter=current_iter,
)
if __name__ == "__main__":
TrainModel().run()