-
Notifications
You must be signed in to change notification settings - Fork 3
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
dd6136f
commit 5699134
Showing
5 changed files
with
321 additions
and
182 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -4,8 +4,8 @@ | |
<meta charset="utf-8" /> | ||
<meta name="generator" content="pandoc" /> | ||
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes" /> | ||
<meta name="dcterms.date" content="2025-01-26" /> | ||
<title>A Unified Model of Derivative Securities</title> | ||
<meta name="dcterms.date" content="2025-02-15" /> | ||
<title>Simple Unified Model of Derivative Securities</title> | ||
<style> | ||
code{white-space: pre-wrap;} | ||
span.smallcaps{font-variant: small-caps;} | ||
|
@@ -44,84 +44,151 @@ | |
</head> | ||
<body> | ||
<header id="title-block-header"> | ||
<h1 class="title">A Unified Model of Derivative Securities</h1> | ||
<p class="date">January 26, 2025</p> | ||
<h1 class="title">Simple Unified Model of Derivative Securities</h1> | ||
<p class="date">February 15, 2025</p> | ||
</header> | ||
<nav id="TOC" role="doc-toc"> | ||
<ul> | ||
<li><a href="#appendix" id="toc-appendix">Appendix</a></li> | ||
</ul> | ||
</nav> | ||
<p><span class="math inline">T</span> — totally ordered set of trading | ||
<em>times</em>.</p> | ||
<!-- | ||
:!pandoc -t html5 -s --katex=https://cdn.jsdelivr.net/npm/[email protected]/dist/ --css math.css ums.md -o ums.html | ||
:!pandoc -V fontsize=12pt ums.md -o ums.pdf | ||
--> | ||
<p><span class="math inline">T</span> — totally ordered set of | ||
<em>trading times</em>.</p> | ||
<p><span class="math inline">I</span> — market <em>instruments</em>.</p> | ||
<p><span class="math inline">\Omega</span> — all possible | ||
<p><span class="math inline">\Omega</span> — possible | ||
<em>outcomes</em>.</p> | ||
<p><span class="math inline">\mathcal{A}_t</span> — a partition of <span | ||
class="math inline">\Omega</span> indicating the <em>information</em> | ||
available at time <span class="math inline">t\in T</span>.</p> | ||
<p><span class="math inline">(\mathcal{A}_t)_{t\in T}</span> — | ||
<em>partitions</em><a href="#fn1" class="footnote-ref" id="fnref1" | ||
role="doc-noteref"><sup>1</sup></a> of <span | ||
class="math inline">\Omega</span> indicating the information available | ||
at time <span class="math inline">t\in T</span>.</p> | ||
<p><span | ||
class="math inline">X_t\colon\mathcal{A}_t\to\boldsymbol{R}^I</span> — | ||
<em>prices</em> at time <span class="math inline">t</span> of market | ||
instruments.</p> | ||
bounded <em>prices</em><a href="#fn2" class="footnote-ref" id="fnref2" | ||
role="doc-noteref"><sup>2</sup></a> at times <span | ||
class="math inline">t\in T</span> of market instruments.</p> | ||
<p><span | ||
class="math inline">C_t\colon\mathcal{A}_t\to\boldsymbol{R}^I</span> — | ||
<em>cash flows</em>, usually 0, at time <span | ||
class="math inline">t</span> of market instruments.</p> | ||
<p><span class="math inline">(\tau_j, \Gamma_j)</span> — a finite | ||
<em>trading strategy</em> of strictly increasing stopping times <span | ||
class="math inline">\tau_j</span> and corresponding trades <span | ||
bounded <em>cash flows</em> at times <span class="math inline">t\in | ||
T</span> of market instruments.</p> | ||
<p>E.g., coupons, dividends, and futures margin adjustments are cash | ||
flows.</p> | ||
<p><span class="math inline">(\tau_j, \Gamma_j)</span> — <em>trading | ||
strategy</em> of strictly increasing stopping times <span | ||
class="math inline">\tau_j</span> and shares <span | ||
class="math inline">\Gamma_j\colon\mathcal{A}_{\tau_j}\to\boldsymbol{R}^I</span> | ||
with <span class="math inline">\sum_j \Gamma_j = 0</span>.</p> | ||
<p><span class="math inline">\Delta_t = \sum_{\tau_j < t} \Gamma_j = | ||
\sum_{s < t} \Gamma_s</span> where <span class="math inline">\Gamma_s | ||
= \Gamma_j 1(\tau_j = s)</span> — the <em>position</em> resulting from | ||
trading.</p> | ||
purchased at <span class="math inline">\tau_j</span>.</p> | ||
<p>The <em>position</em> resulting from a trading strategy is <span | ||
class="math inline">\Delta_t = \sum_{\tau_j < t} \Gamma_j = \sum_{s | ||
< t} \Gamma_s</span> where <span class="math inline">\Gamma_s = | ||
\Gamma_j 1(\tau_j = s)</span>. Note the strict inequality. It takes time | ||
for a trade to settle and become a part of the position.</p> | ||
<p><span class="math inline">V_t = (\Delta_t + \Gamma_t)\cdot X_t</span> | ||
— the <em>value</em>, or mark-to-market, of the strategy.</p> | ||
— the <em>value</em>, or <em>mark-to-market</em>, of the strategy.</p> | ||
<p><span class="math inline">A_t = \Delta_t\cdot C_t - \Gamma_t\cdot | ||
X_t</span> — the amount showing up in the trading <em>account</em>.</p> | ||
X_t</span> — the <em>amount</em> showing up in the trading account.</p> | ||
<p>Arbitrage exists if there is a trading strategy with <span | ||
class="math inline">A_{\tau_0} > 0</span> and <span | ||
class="math inline">A_{\tau_0} > 0</span>, <span | ||
class="math inline">A_t \ge0</span>, <span class="math inline">t > | ||
\tau_0</span>.</p> | ||
<p><strong>Fundamental Theorem of Asset Pricing</strong>. There is no | ||
arbitrage if there exist positive measures <span | ||
\tau_0</span>, and <span class="math inline">\sum_j \Gamma_j = 0</span>. | ||
You make money on the first trade and never lose money until the | ||
position is closed.</p> | ||
<p><strong>Theorem</strong> (Fundamental Theorem of Asset Pricing) | ||
<em>There is no arbitrage if there exist <em>deflators</em>, positive | ||
finitely additive measures<a href="#fn3" class="footnote-ref" | ||
id="fnref3" role="doc-noteref"><sup>3</sup></a> <span | ||
class="math inline">D_t</span> on <span | ||
class="math inline">\mathcal{A}_t</span>, <span class="math inline">t\in | ||
T</span>, with <span class="math display"> | ||
T</span>, with</em> <span class="math display"> | ||
X_t D_t = (X_u D_u + \sum_{t < s \le u} C_s | ||
D_s)|_{\mathcal{A}_t}, t\le u. | ||
</span></p> | ||
<p><strong>Lemma</strong>. With the above notation <span | ||
</span> (Note <span class="math inline">Y = E[X|\mathcal{A}]</span> if | ||
and only if <span class="math inline">Y(P|_\mathcal{A}) = | ||
(XP)|_\mathcal{A}</span> when <span class="math inline">P</span> is a | ||
positive measure with mass 1.)</p> | ||
<p><strong>Claim</strong>. <em>If <span class="math inline">M_t = | ||
M_u|_{\mathcal{A}_t}</span>, <span class="math inline">t\le u</span>, is | ||
a <span class="math inline">\boldsymbol{R}^I</span>-valued</em> | ||
martingale measure <em>and <span class="math inline">D_t\in | ||
ba(A_t)</span> are positive measures then <span class="math inline">{X_t | ||
D_t = M_t - \sum_{s\le t} C_s D_s}</span> is arbitrage-free</em>.</p> | ||
<p><strong>Example</strong>. (Black-Scholes/Merton) <span | ||
class="math inline">M_t = (r, se^{\sigma B_t - \sigma^2t/2})P</span>, | ||
<span class="math inline">D_t = e^{-\rho t}P</span> where <span | ||
class="math inline">P</span> is Wiener measure.</p> | ||
<!-- | ||
__Example__. (LIBOR Market Model) _If repurchase agreements are available with price 1 at $t$ | ||
and pay $e^{f_t\,dt}$ at time $t$ then the_ stochastic discount _$D_t = e^{-\int_0^t} f_s\,ds}$ is a deflator_. | ||
--> | ||
<p><strong>Lemma</strong>. <em>With the above notation</em> <span | ||
class="math display"> | ||
V_t D_t = (V_u D_u + \sum_{t < s \le u} A_s | ||
D_s)|_{\mathcal{A}_t}, t\le u. | ||
</span></p> | ||
<p>Trading strategies create synthetic instruments where price | ||
corresponds to value and cash flow corresponds to account.</p> | ||
<p>Every arbitrage free model has the form <span class="math display"> | ||
X_t D_t = M_t - \sum_{s\le t} C_s D_s | ||
</span> where <span class="math inline">M_t = | ||
M_u|_{\mathcal{A}_t}</span> is a <em>martingale measure</em>.</p> | ||
<section id="appendix" class="level2"> | ||
<h2>Appendix</h2> | ||
<p><span class="math inline">X,C\colon\sum_{j=0}^n B(\mathcal{A}_j, | ||
\boldsymbol{R}^I)</span></p> | ||
<p><span class="math inline">A\colon\sum_{j=0}^n B(\mathcal{A}_j, | ||
\boldsymbol{R}^I)\to\sum_{j=0}^n B(\mathcal{A}_j)</span> where <span | ||
class="math inline">A(\oplus \Gamma_j) = \oplus \Delta_j\cdot C_j - | ||
\Gamma_j\cdot X_j</span>.</p> | ||
<p><span class="math inline">\mathcal{G}_0 = \{\oplus \Gamma_j\mid | ||
\sum_j \Gamma_j = 0\}</span>.</p> | ||
<p><span class="math inline">\mathcal{P} = \{\oplus A_j\mid A_0 > 0, | ||
A_j\ge 0\}</span>.</p> | ||
<p>Arbitrage if there exists <span | ||
class="math inline">\Gamma\in\mathcal{G}_0</span> with <span | ||
class="math inline">A(\Gamma)\in\mathcal{P}</span>.</p> | ||
<p><span class="math inline">A^*\colon \sum_{j=0}^n | ||
ba(\mathcal{A}_j)\to\sum_{j=0}^n ba(\mathcal{A}_j, | ||
\boldsymbol{R}^I)</span></p> | ||
</section> | ||
<p><strong>Trading strategies create synthetic instruments where price | ||
corresponds to value and cash flow corresponds to account.</strong></p> | ||
<p>A (cash settled) derivative contract is specified by stopping times | ||
<span class="math inline">{\hat{\tau}_j}</span> and cash flows <span | ||
class="math inline">\hat{A}_j</span>. If there exists a trading strategy | ||
<span class="math inline">(\tau_j,\Gamma_j)</span> with <span | ||
class="math inline">{\sum_j \Gamma_j = 0}</span>, <span | ||
class="math inline">{A_{\hat{\tau}_j} = \hat{A}_j}</span> and <span | ||
class="math inline">{A_t = 0}</span> (self-financing) otherwise, then a | ||
perfect hedge exists<a href="#fn4" class="footnote-ref" id="fnref4" | ||
role="doc-noteref"><sup>4</sup></a>. The value of the derivative is | ||
determined by <span class="math display"> | ||
V_t D_t = (\sum_{\hat{\tau}_j > t} \hat{A}_j | ||
D_{\hat{\tau}_j})|_{\mathcal{A}_t}. | ||
</span> Note the right hand side is determined by the contract | ||
specifications and <span class="math inline">(D_t)</span>. Assuming | ||
<span class="math inline">\tau_0 = 0</span>, <span | ||
class="math inline">V_0 = \Gamma_0\cdot X_0</span> so the initial hedge | ||
<span class="math inline">\Gamma_0</span> is the Fréchet derivative | ||
<span class="math inline">D_{X_0}V_0</span> with respect to <span | ||
class="math inline">X_0</span>. Since <span class="math inline">V_t = | ||
(\Gamma_t + \Delta_t)\cdot X_t</span> we have <span | ||
class="math inline">\Gamma_t = D_{X_t}V_t - \Delta_t</span>. Note <span | ||
class="math inline">\Delta_t</span> is settled prior to time <span | ||
class="math inline">t</span>. This does not specify the trading times | ||
<span class="math inline">\tau_j > 0</span><a href="#fn5" | ||
class="footnote-ref" id="fnref5" | ||
role="doc-noteref"><sup>5</sup></a>.</p> | ||
<aside id="footnotes" class="footnotes footnotes-end-of-document" | ||
role="doc-endnotes"> | ||
<hr /> | ||
<ol> | ||
<li id="fn1"><p>A partition of <span class="math inline">\Omega</span> | ||
is a collection of pairwise disjoint sets with union <span | ||
class="math inline">\Omega</span>. If <span | ||
class="math inline">\mathcal{A}</span> is a finite algebra of sets on | ||
<span class="math inline">\Omega</span> then the atoms of <span | ||
class="math inline">\mathcal{A}</span> form a partition of <span | ||
class="math inline">\Omega</span>. Partial information is knowing which | ||
atom <span class="math inline">\omega\in\Omega</span> belongs to. A | ||
function <span class="math inline">X\colon\Omega\to\boldsymbol{R}</span> | ||
is <span class="math inline">\mathcal{A}</span>-measurable if and only | ||
if it is constant on atoms so <span class="math inline">X</span> | ||
<em>is</em> a function on the atoms of <span | ||
class="math inline">\mathcal{A}</span>.<a href="#fnref1" | ||
class="footnote-back" role="doc-backlink">↩︎</a></p></li> | ||
<li id="fn2"><p>Prices <em>are</em> bounded. There is a finite amount of | ||
money in the world. Likewise for the number of shares it is possible to | ||
trade.<a href="#fnref2" class="footnote-back" | ||
role="doc-backlink">↩︎</a></p></li> | ||
<li id="fn3"><p>The dual of bounded functions <span | ||
class="math inline">B(\Omega)^* \cong ba(\Omega)</span> is the space of | ||
finitely additive measures on <span class="math inline">\Omega</span>. | ||
<span class="math inline">L\in B(\Omega)^*</span> corresponds to the | ||
measure <span class="math inline">\lambda(E) = L1_E</span>. If <span | ||
class="math inline">P</span> is a positive measure with mass 1 then | ||
<span class="math inline">Y = E[X|\mathcal{A}]</span> if and only if | ||
<span class="math inline">Y(P|_\mathcal{A}) = | ||
(XP)|_\mathcal{A}</span>.<a href="#fnref3" class="footnote-back" | ||
role="doc-backlink">↩︎</a></p></li> | ||
<li id="fn4"><p>A perfect hedge never exists.<a href="#fnref4" | ||
class="footnote-back" role="doc-backlink">↩︎</a></p></li> | ||
<li id="fn5"><p>Continuous time trading is impossible.<a href="#fnref5" | ||
class="footnote-back" role="doc-backlink">↩︎</a></p></li> | ||
</ol> | ||
</aside> | ||
</body> | ||
</html> |
Oops, something went wrong.