Kevin Blighe, Jessica Lasky-Su 2021-08-01
In many analyses, a large amount of variables have to be tested independently against the trait/endpoint of interest, and also adjusted for covariates and confounding factors at the same time. The major bottleneck in these is the amount of time that it takes to complete these analyses.
With RegParallel, a large number of tests can be performed simultaneously. On a 12-core system, 144 variables can be tested simultaneously, with 1000s of variables processed in a matter of seconds via ‘nested’ parallel processing.
Works for logistic regression, linear regression, conditional logistic regression, Cox proportional hazards and survival models, and Bayesian logistic regression. Also caters for generalised linear models that utilise survey weights created by the ‘survey’ CRAN package and that utilise ‘survey::svyglm’.
if (!requireNamespace('BiocManager', quietly = TRUE))
install.packages('BiocManager')
BiocManager::install('RegParallel')
Note: to install development version:
devtools::install_github('kevinblighe/RegParallel')
library(RegParallel)
For this quick start, we will follow the tutorial (from Section 3.1) of RNA-seq workflow: gene-level exploratory analysis and differential expression. Specifically, we will load the ‘airway’ data, where different airway smooth muscle cells were treated with dexamethasone.
library(airway)
library(magrittr)
data('airway')
airway$dex %<>% relevel('untrt')
Normalise the raw counts in DESeq2 and produce regularised log expression levels:
library(DESeq2)
dds <- DESeqDataSet(airway, design = ~ dex + cell)
dds <- DESeq(dds, betaPrior = FALSE)
rldexpr <- assay(rlog(dds, blind = FALSE))
rlddata <- data.frame(colData(airway), t(rldexpr))
Here, we fit a binomial logistic regression model to the data via glmParallel, with dexamethasone as the dependent variable.
## NOT RUN
res1 <- RegParallel(
data = rlddata[ ,1:3000],
formula = 'dex ~ [*]',
FUN = function(formula, data)
glm(formula = formula,
data = data,
family = binomial(link = 'logit')),
FUNtype = 'glm',
variables = colnames(rlddata)[10:3000])
res1[order(res1$P, decreasing=FALSE),]
Here, we will perform the linear regression using both glmParallel and lmParallel. We will appreciate that a linear regression is the same using either function with the default settings.
Regularised log expression levels from our DESeq2 data will be used.
rlddata <- rlddata[ ,1:2000]
res2 <- RegParallel(
data = rlddata,
formula = '[*] ~ cell',
FUN = function(formula, data)
glm(formula = formula,
data = data,
method = 'glm.fit'),
FUNtype = 'glm',
variables = colnames(rlddata)[10:ncol(rlddata)],
p.adjust = "none")
res3 <- RegParallel(
data = rlddata,
formula = '[*] ~ cell',
FUN = function(formula, data)
lm(formula = formula,
data = data),
FUNtype = 'lm',
variables = colnames(rlddata)[10:ncol(rlddata)],
p.adjust = "none")
subset(res2, P<0.05)
## Variable Term Beta StandardError t
## 1: ENSG00000001461 cellN061011 -0.46859875 0.10526111 -4.451775
## 2: ENSG00000001461 cellN080611 -0.84020922 0.10526111 -7.982143
## 3: ENSG00000001461 cellN61311 -0.87778101 0.10526111 -8.339082
## 4: ENSG00000001561 cellN080611 -1.71802758 0.13649920 -12.586357
## 5: ENSG00000001561 cellN61311 -1.05328889 0.13649920 -7.716448
## ---
## 519: ENSG00000092108 cellN061011 -0.12721659 0.01564082 -8.133625
## 520: ENSG00000092108 cellN61311 -0.12451203 0.01564082 -7.960708
## 521: ENSG00000092148 cellN080611 -0.34988071 0.10313461 -3.392467
## 522: ENSG00000092200 cellN080611 0.05906656 0.01521063 3.883241
## 523: ENSG00000092208 cellN080611 -0.28587683 0.08506716 -3.360602
## P OR ORlower ORupper
## 1: 0.0112313246 0.6258787 0.5092039 0.7692873
## 2: 0.0013351958 0.4316202 0.3511586 0.5305181
## 3: 0.0011301853 0.4157043 0.3382098 0.5109554
## 4: 0.0002293465 0.1794197 0.1373036 0.2344544
## 5: 0.0015182960 0.3487887 0.2669157 0.4557753
## ---
## 519: 0.0012429963 0.8805429 0.8539591 0.9079544
## 520: 0.0013489163 0.8829276 0.8562718 0.9104133
## 521: 0.0274674209 0.7047722 0.5757851 0.8626549
## 522: 0.0177922771 1.0608458 1.0296864 1.0929482
## 523: 0.0282890537 0.7513552 0.6359690 0.8876762
subset(res3, P<0.05)
## Variable Term Beta StandardError t
## 1: ENSG00000001461 cellN061011 -0.46859875 0.10526111 -4.451775
## 2: ENSG00000001461 cellN080611 -0.84020922 0.10526111 -7.982143
## 3: ENSG00000001461 cellN61311 -0.87778101 0.10526111 -8.339082
## 4: ENSG00000001561 cellN080611 -1.71802758 0.13649920 -12.586357
## 5: ENSG00000001561 cellN61311 -1.05328889 0.13649920 -7.716448
## ---
## 519: ENSG00000092108 cellN061011 -0.12721659 0.01564082 -8.133625
## 520: ENSG00000092108 cellN61311 -0.12451203 0.01564082 -7.960708
## 521: ENSG00000092148 cellN080611 -0.34988071 0.10313461 -3.392467
## 522: ENSG00000092200 cellN080611 0.05906656 0.01521063 3.883241
## 523: ENSG00000092208 cellN080611 -0.28587683 0.08506716 -3.360602
## P OR ORlower ORupper
## 1: 0.0112313246 0.6258787 0.5092039 0.7692873
## 2: 0.0013351958 0.4316202 0.3511586 0.5305181
## 3: 0.0011301853 0.4157043 0.3382098 0.5109554
## 4: 0.0002293465 0.1794197 0.1373036 0.2344544
## 5: 0.0015182960 0.3487887 0.2669157 0.4557753
## ---
## 519: 0.0012429963 0.8805429 0.8539591 0.9079544
## 520: 0.0013489163 0.8829276 0.8562718 0.9104133
## 521: 0.0274674209 0.7047722 0.5757851 0.8626549
## 522: 0.0177922771 1.0608458 1.0296864 1.0929482
## 523: 0.0282890537 0.7513552 0.6359690 0.8876762
For this example, we will load breast cancer gene expression data with recurrence free survival (RFS) from Gene Expression Profiling in Breast Cancer: Understanding the Molecular Basis of Histologic Grade To Improve Prognosis. Specifically, we will encode each gene’s expression into Low|Mid|High based on Z-scores and compare these against RFS while adjusting for tumour grade in a Cox Proportional Hazards model.
First, let’s read in and prepare the data:
library(Biobase)
library(GEOquery)
# load series and platform data from GEO
gset <- getGEO('GSE2990', GSEMatrix =TRUE, getGPL=FALSE)
x <- exprs(gset[[1]])
# remove Affymetrix control probes
x <- x[-grep('^AFFX', rownames(x)),]
# transform the expression data to Z scores
x <- t(scale(t(x)))
# extract information of interest from the phenotype data (pdata)
idx <- which(colnames(pData(gset[[1]])) %in%
c('age:ch1', 'distant rfs:ch1', 'er:ch1',
'ggi:ch1', 'grade:ch1', 'node:ch1',
'size:ch1', 'time rfs:ch1'))
metadata <- data.frame(pData(gset[[1]])[,idx],
row.names = rownames(pData(gset[[1]])))
# remove samples from the pdata that have any NA value
discard <- apply(metadata, 1, function(x) any(is.na(x)))
metadata <- metadata[!discard,]
# filter the Z-scores expression data to match the samples in our pdata
x <- x[,which(colnames(x) %in% rownames(metadata))]
# check that sample names match exactly between pdata and Z-scores
all((colnames(x) == rownames(metadata)) == TRUE)
## [1] TRUE
# create a merged pdata and Z-scores object
coxdata <- data.frame(metadata, t(x))
# tidy column names
colnames(coxdata)[1:8] <- c('Age', 'Distant.RFS', 'ER',
'GGI', 'Grade', 'Node',
'Size', 'Time.RFS')
# prepare certain phenotypes
coxdata$Age <- as.numeric(gsub('^KJ', '', coxdata$Age))
coxdata$Distant.RFS <- as.numeric(coxdata$Distant.RFS)
coxdata$ER <- factor(coxdata$ER, levels = c(0, 1))
coxdata$Grade <- factor(coxdata$Grade, levels = c(1, 2, 3))
coxdata$Time.RFS <- as.numeric(gsub('^KJX|^KJ', '', coxdata$Time.RFS))
With the data prepared, we can now apply a Cox Proportional Hazards model independently for each probe in the dataset against RFS.
In this we also increase the default blocksize to 2000 in order to speed up the analysis.
library(survival)
res5 <- RegParallel(
data = coxdata,
formula = 'Surv(Time.RFS, Distant.RFS) ~ [*]',
FUN = function(formula, data)
coxph(formula = formula,
data = data,
ties = 'breslow',
singular.ok = TRUE),
FUNtype = 'coxph',
variables = colnames(coxdata)[9:ncol(coxdata)],
blocksize = 2000,
p.adjust = "BH")
res5 <- res5[!is.na(res5$P),]
res5
## Variable Term Beta StandardError Z
## 1: X1007_s_at X1007_s_at 0.3780639987 0.3535022 1.0694811914
## 2: X1053_at X1053_at 0.1177398813 0.2275041 0.5175285346
## 3: X117_at X117_at 0.6265036787 0.6763106 0.9263549892
## 4: X121_at X121_at -0.6138126274 0.6166626 -0.9953783151
## 5: X1255_g_at X1255_g_at -0.2043297829 0.3983930 -0.5128849375
## ---
## 22211: X91703_at X91703_at -0.4124539527 0.4883759 -0.8445419981
## 22212: X91816_f_at X91816_f_at 0.0482030943 0.3899180 0.1236236554
## 22213: X91826_at X91826_at 0.0546751431 0.3319572 0.1647053850
## 22214: X91920_at X91920_at -0.6452125945 0.8534623 -0.7559942684
## 22215: X91952_at X91952_at -0.0001396044 0.7377681 -0.0001892254
## P LRT Wald LogRank HR HRlower HRupper
## 1: 0.2848529 0.2826716 0.2848529 0.2848400 1.4594563 0.72994385 2.918050
## 2: 0.6047873 0.6085603 0.6047873 0.6046839 1.1249515 0.72024775 1.757056
## 3: 0.3542615 0.3652989 0.3542615 0.3541855 1.8710573 0.49706191 7.043097
## 4: 0.3195523 0.3188303 0.3195523 0.3186921 0.5412832 0.16162940 1.812712
## 5: 0.6080318 0.6084157 0.6080318 0.6077573 0.8151935 0.37337733 1.779809
## ---
## 22211: 0.3983666 0.3949865 0.3983666 0.3981244 0.6620237 0.25419512 1.724169
## 22212: 0.9016133 0.9015048 0.9016133 0.9016144 1.0493838 0.48869230 2.253373
## 22213: 0.8691759 0.8691994 0.8691759 0.8691733 1.0561974 0.55103934 2.024453
## 22214: 0.4496526 0.4478541 0.4496526 0.4498007 0.5245510 0.09847349 2.794191
## 22215: 0.9998490 0.9998490 0.9998490 0.9998490 0.9998604 0.23547784 4.245498
## P.adjust LRT.adjust Wald.adjust LogRank.adjust
## 1: 0.9999969 0.9999969 0.9999969 0.9999969
## 2: 0.9999969 0.9999969 0.9999969 0.9999969
## 3: 0.9999969 0.9999969 0.9999969 0.9999969
## 4: 0.9999969 0.9999969 0.9999969 0.9999969
## 5: 0.9999969 0.9999969 0.9999969 0.9999969
## ---
## 22211: 0.9999969 0.9999969 0.9999969 0.9999969
## 22212: 0.9999969 0.9999969 0.9999969 0.9999969
## 22213: 0.9999969 0.9999969 0.9999969 0.9999969
## 22214: 0.9999969 0.9999969 0.9999969 0.9999969
## 22215: 0.9999969 0.9999969 0.9999969 0.9999969
We now take the top probes from the model by Log Rank p-value and use biomaRt to look up the corresponding gene symbols.
not run
res5 <- res5[order(res5$LogRank, decreasing = FALSE),]
final <- subset(res5, LogRank < 0.01)
probes <- gsub('^X', '', final$Variable)
library(biomaRt)
mart <- useMart('ENSEMBL_MART_ENSEMBL', host = 'useast.ensembl.org')
mart <- useDataset("hsapiens_gene_ensembl", mart)
annotLookup <- getBM(mart = mart,
attributes = c('affy_hg_u133a',
'ensembl_gene_id',
'gene_biotype',
'external_gene_name'),
filter = 'affy_hg_u133a',
values = probes,
uniqueRows = TRUE)
Two of the top hits include CXCL12 and MMP10. High expression of CXCL12 was previously associated with good progression free and overall survival in breast cancer in (doi: 10.1016/j.cca.2018.05.041.)[https://www.ncbi.nlm.nih.gov/pubmed/29800557] , whilst high expression of MMP10 was associated with poor prognosis in colon cancer in (doi: 10.1186/s12885-016-2515-7)[https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4950722/].
We can further explore the role of these genes to RFS by dividing their gene expression Z-scores into tertiles for low, mid, and high expression:
# extract RFS and probe data for downstream analysis
survplotdata <- coxdata[,c('Time.RFS', 'Distant.RFS',
'X203666_at', 'X205680_at')]
colnames(survplotdata) <- c('Time.RFS', 'Distant.RFS',
'CXCL12', 'MMP10')
# set Z-scale cut-offs for high and low expression
highExpr <- 1.0
lowExpr <- 1.0
# encode the expression for CXCL12 and MMP10 as low, mid, and high
survplotdata$CXCL12 <- ifelse(survplotdata$CXCL12 >= highExpr, 'High',
ifelse(x <= lowExpr, 'Low', 'Mid'))
survplotdata$MMP10 <- ifelse(survplotdata$MMP10 >= highExpr, 'High',
ifelse(x <= lowExpr, 'Low', 'Mid'))
# relevel the factors to have mid as the reference level
survplotdata$CXCL12 <- factor(survplotdata$CXCL12,
levels = c('Mid', 'Low', 'High'))
survplotdata$MMP10 <- factor(survplotdata$MMP10,
levels = c('Mid', 'Low', 'High'))
Plot the survival curves and place Log Rank p-value in the plots:
library(survminer)
ggsurvplot(survfit(Surv(Time.RFS, Distant.RFS) ~ CXCL12,
data = survplotdata),
data = survplotdata,
risk.table = TRUE,
pval = TRUE,
break.time.by = 500,
ggtheme = theme_minimal(),
risk.table.y.text.col = TRUE,
risk.table.y.text = FALSE)
ggsurvplot(survfit(Surv(Time.RFS, Distant.RFS) ~ MMP10,
data = survplotdata),
data = survplotdata,
risk.table = TRUE,
pval = TRUE,
break.time.by = 500,
ggtheme = theme_minimal(),
risk.table.y.text.col = TRUE,
risk.table.y.text = FALSE)
In this example, we will re-use the Cox data for the purpose of performing conditional logistic regression with tumour grade as our grouping / matching factor. For this example, we will use ER status as the dependent variable and also adjust for age.
x <- exprs(gset[[1]])
x <- x[-grep('^AFFX', rownames(x)),]
x <- scale(x)
x <- x[,which(colnames(x) %in% rownames(metadata))]
coxdata <- data.frame(metadata, t(x))
colnames(coxdata)[1:8] <- c('Age', 'Distant.RFS', 'ER',
'GGI', 'Grade', 'Node',
'Size', 'Time.RFS')
coxdata$Age <- as.numeric(gsub('^KJ', '', coxdata$Age))
coxdata$Grade <- factor(coxdata$Grade, levels = c(1, 2, 3))
coxdata$ER <- as.numeric(coxdata$ER)
coxdata <- coxdata[!is.na(coxdata$ER),]
res6 <- RegParallel(
data = coxdata,
formula = 'ER ~ [*] + Age + strata(Grade)',
FUN = function(formula, data)
clogit(formula = formula,
data = data,
method = 'breslow'),
FUNtype = 'clogit',
variables = colnames(coxdata)[9:ncol(coxdata)],
blocksize = 2000)
subset(res6, P < 0.01)
## Variable Term Beta StandardError Z P
## 1: X204667_at X204667_at 0.9940504 0.3628087 2.739875 0.006146252
## 2: X205225_at X205225_at 0.4444556 0.1633857 2.720285 0.006522559
## 3: X207813_s_at X207813_s_at 0.8218501 0.3050777 2.693904 0.007062046
## 4: X212108_at X212108_at 1.9610211 0.7607284 2.577820 0.009942574
## 5: X219497_s_at X219497_s_at -1.0249671 0.3541401 -2.894242 0.003800756
## LRT Wald LogRank HR HRlower HRupper
## 1: 0.006808415 0.02212540 0.02104525 2.7021573 1.3270501 5.502169
## 2: 0.010783544 0.01941078 0.01701248 1.5596409 1.1322713 2.148319
## 3: 0.037459927 0.02449358 0.02424809 2.2747043 1.2509569 4.136257
## 4: 0.033447973 0.03356050 0.03384960 7.1065797 1.6000274 31.564132
## 5: 0.005153233 0.01387183 0.01183245 0.3588083 0.1792329 0.718302
not run
getBM(mart = mart,
attributes = c('affy_hg_u133a',
'ensembl_gene_id',
'gene_biotype',
'external_gene_name'),
filter = 'affy_hg_u133a',
values = c('204667_at',
'205225_at',
'207813_s_at',
'212108_at',
'219497_s_at'),
uniqueRows=TRUE)
Oestrogen receptor (ESR1) comes out - makes sense! Also, although 204667_at is not listed in biomaRt, it overlaps an exon of FOXA1, which also makes sense in relation to oestrogen signalling.
## used (Mb) gc trigger (Mb) max used (Mb)
## Ncells 7061891 377.2 11504125 614.4 11504125 614.4
## Vcells 28488913 217.4 72389158 552.3 72389120 552.3
Advanced features include the ability to modify block size, choose different numbers of cores, enable ‘nested’ parallel processing, modify limits for confidence intervals, and exclude certain model terms from output.
First create some test data for the purpose of benchmarking:
options(scipen=10)
options(digits=6)
# create a data-matrix of 20 x 60000 (rows x cols) random numbers
col <- 60000
row <- 20
mat <- matrix(
rexp(col*row, rate = .1),
ncol = col)
# add fake gene and sample names
colnames(mat) <- paste0('gene', 1:ncol(mat))
rownames(mat) <- paste0('sample', 1:nrow(mat))
# add some fake metadata
modelling <- data.frame(
cell = rep(c('B', 'T'), nrow(mat) / 2),
group = c(rep(c('treatment'), nrow(mat) / 2), rep(c('control'), nrow(mat) / 2)),
dosage = t(data.frame(matrix(rexp(row, rate = 1), ncol = row))),
mat,
row.names = rownames(mat))
With 2 cores instead of the default of 3, coupled with nestedParallel being enabled, a total of 2 x 2 = 4 threads will be used.
df <- modelling[ ,1:2000]
variables <- colnames(df)[4:ncol(df)]
ptm <- proc.time()
res <- RegParallel(
data = df,
formula = 'factor(group) ~ [*] + (cell:dosage) ^ 2',
FUN = function(formula, data)
glm(formula = formula,
data = data,
family = binomial(link = 'logit'),
method = 'glm.fit'),
FUNtype = 'glm',
variables = variables,
blocksize = 500,
cores = 2,
nestedParallel = TRUE,
p.adjust = "BY")
proc.time() - ptm
## user system elapsed
## 11.352 4.656 10.412
df <- modelling[ ,1:2000]
variables <- colnames(df)[4:ncol(df)]
ptm <- proc.time()
res <- RegParallel(
data = df,
formula = 'factor(group) ~ [*] + (cell:dosage) ^ 2',
FUN = function(formula, data)
glm(formula = formula,
data = data,
family = binomial(link = 'logit'),
method = 'glm.fit'),
FUNtype = 'glm',
variables = variables,
blocksize = 500,
cores = 2,
nestedParallel = FALSE,
p.adjust = "BY")
proc.time() - ptm
## user system elapsed
## 0.988 0.164 10.084
Focusing on the elapsed time (as system time only reports time from the last core that finished), we can see that nested processing has negligible improvement or may actually be slower under certain conditions when tested over a small number of variables. This is likely due to the system being slowed by simply managing the larger number of threads. Nested processing’s benefits can only be gained when processing a large number of variables:
df <- modelling[ ,1:40000]
variables <- colnames(df)[4:ncol(df)]
system.time(RegParallel(
data = df,
formula = 'factor(group) ~ [*] + (cell:dosage) ^ 2',
FUN = function(formula, data)
glm(formula = formula,
data = data,
family = binomial(link = 'logit'),
method = 'glm.fit'),
FUNtype = 'glm',
variables = variables,
blocksize = 2000,
cores = 2,
nestedParallel = TRUE))
## user system elapsed
## 306.584 31.132 206.879
df <- modelling[,1:40000]
variables <- colnames(df)[4:ncol(df)]
system.time(RegParallel(
data = df,
formula = 'factor(group) ~ [*] + (cell:dosage) ^ 2',
FUN = function(formula, data)
glm(formula = formula,
data = data,
family = binomial(link = 'logit'),
method = 'glm.fit'),
FUNtype = 'glm',
variables = variables,
blocksize = 2000,
cores = 2,
nestedParallel = FALSE))
## user system elapsed
## 262.116 1.616 265.749
Performance is system-dependent and even increasing cores may not result in huge gains in time. Performance is a trade-off between cores, forked threads, blocksize, and the number of terms in each model.
In this example, we choose a large blocksize and 3 cores. With nestedParallel enabled, this translates to 9 simultaneous threads.
df <- modelling[,1:40000]
variables <- colnames(df)[4:ncol(df)]
system.time(RegParallel(
data = df,
formula = 'factor(group) ~ [*] + (cell:dosage) ^ 2',
FUN = function(formula, data)
glm(formula = formula,
data = data,
family = binomial(link = 'logit'),
method = 'glm.fit'),
FUNtype = 'glm',
variables = variables,
blocksize = 5000,
cores = 3,
nestedParallel = TRUE))
## user system elapsed
## 616.236 26.196 309.488
df <- modelling[ ,1:500]
variables <- colnames(df)[4:ncol(df)]
# 99% confidfence intervals
RegParallel(
data = df,
formula = 'factor(group) ~ [*] + (cell:dosage) ^ 2',
FUN = function(formula, data)
glm(formula = formula,
data = data,
family = binomial(link = 'logit'),
method = 'glm.fit'),
FUNtype = 'glm',
variables = variables,
blocksize = 150,
cores = 3,
nestedParallel = TRUE,
conflevel = 99)
## Variable Term Beta StandardError Z P OR
## 1: gene1 gene1 0.06333797 0.0546336 1.159323 0.246325 1.06539
## 2: gene1 cellB:dosage 1.46710693 1.1706922 1.253196 0.210134 4.33667
## 3: gene1 cellT:dosage 0.75012944 1.0646934 0.704550 0.481091 2.11727
## 4: gene2 gene2 0.08600691 0.0587386 1.464231 0.143131 1.08981
## 5: gene2 cellB:dosage 1.42579282 1.1307990 1.260872 0.207355 4.16116
## ---
## 1487: gene496 cellB:dosage 2.70464635 1.7641808 1.533089 0.125254 14.94903
## 1488: gene496 cellT:dosage 0.72487045 1.1111015 0.652389 0.514150 2.06446
## 1489: gene497 gene497 0.00837784 0.0547597 0.152993 0.878404 1.00841
## 1490: gene497 cellB:dosage 1.14481873 0.9726219 1.177044 0.239178 3.14187
## 1491: gene497 cellT:dosage 0.48628896 0.9857062 0.493341 0.621772 1.62627
## ORlower ORupper
## 1: 0.925530 1.22638
## 2: 0.212589 88.46529
## 3: 0.136376 32.87124
## 4: 0.936792 1.26783
## 5: 0.226061 76.59547
## ---
## 1487: 0.158884 1406.52161
## 1488: 0.117992 36.12114
## 1489: 0.875751 1.16117
## 1490: 0.256535 38.47954
## 1491: 0.128385 20.60018
# 95% confidfence intervals (default)
RegParallel(
data = df,
formula = 'factor(group) ~ [*] + (cell:dosage) ^ 2',
FUN = function(formula, data)
glm(formula = formula,
data = data,
family = binomial(link = 'logit'),
method = 'glm.fit'),
FUNtype = 'glm',
variables = variables,
blocksize = 150,
cores = 3,
nestedParallel = TRUE,
conflevel = 95)
## Variable Term Beta StandardError Z P OR
## 1: gene1 gene1 0.06333797 0.0546336 1.159323 0.246325 1.06539
## 2: gene1 cellB:dosage 1.46710693 1.1706922 1.253196 0.210134 4.33667
## 3: gene1 cellT:dosage 0.75012944 1.0646934 0.704550 0.481091 2.11727
## 4: gene2 gene2 0.08600691 0.0587386 1.464231 0.143131 1.08981
## 5: gene2 cellB:dosage 1.42579282 1.1307990 1.260872 0.207355 4.16116
## ---
## 1487: gene496 cellB:dosage 2.70464635 1.7641808 1.533089 0.125254 14.94903
## 1488: gene496 cellT:dosage 0.72487045 1.1111015 0.652389 0.514150 2.06446
## 1489: gene497 gene497 0.00837784 0.0547597 0.152993 0.878404 1.00841
## 1490: gene497 cellB:dosage 1.14481873 0.9726219 1.177044 0.239178 3.14187
## 1491: gene497 cellT:dosage 0.48628896 0.9857062 0.493341 0.621772 1.62627
## ORlower ORupper
## 1: 0.957201 1.18580
## 2: 0.437181 43.01812
## 3: 0.262729 17.06262
## 4: 0.971301 1.22279
## 5: 0.453603 38.17260
## ---
## 1487: 0.470912 474.55485
## 1488: 0.233903 18.22127
## 1489: 0.905789 1.12266
## 1490: 0.466972 21.13906
## 1491: 0.235591 11.22606
# remove terms but keep Intercept
RegParallel(
data = df,
formula = 'factor(group) ~ [*] + (cell:dosage) ^ 2',
FUN = function(formula, data)
glm(formula = formula,
data = data,
family = binomial(link = 'logit'),
method = 'glm.fit'),
FUNtype = 'glm',
variables = variables,
blocksize = 150,
cores = 3,
nestedParallel = TRUE,
conflevel = 95,
excludeTerms = c('cell', 'dosage'),
excludeIntercept = FALSE)
## Variable Term Beta StandardError Z P OR
## 1: gene1 (Intercept) -1.35754580 1.0199412 -1.331004 0.183188 0.257291
## 2: gene1 gene1 0.06333797 0.0546336 1.159323 0.246325 1.065387
## 3: gene2 (Intercept) -1.92893568 1.2193210 -1.581975 0.113655 0.145303
## 4: gene2 gene2 0.08600691 0.0587386 1.464231 0.143131 1.089814
## 5: gene3 (Intercept) -1.36553647 0.9199838 -1.484305 0.137728 0.255244
## ---
## 990: gene495 gene495 0.02963303 0.0426166 0.695340 0.486842 1.030076
## 991: gene496 (Intercept) -0.02762196 0.8035955 -0.034373 0.972580 0.972756
## 992: gene496 gene496 -0.10668807 0.0699128 -1.526017 0.127006 0.898806
## 993: gene497 (Intercept) -0.66652515 0.8262057 -0.806730 0.419822 0.513490
## 994: gene497 gene497 0.00837784 0.0547597 0.152993 0.878404 1.008413
## ORlower ORupper
## 1: 0.0348538 1.89933
## 2: 0.9572010 1.18580
## 3: 0.0133164 1.58548
## 4: 0.9713012 1.22279
## 5: 0.0420594 1.54898
## ---
## 990: 0.9475326 1.11981
## 991: 0.2013642 4.69922
## 992: 0.7837113 1.03080
## 993: 0.1016867 2.59298
## 994: 0.9057888 1.12266
# remove everything but the variable being tested
RegParallel(
data = df,
formula = 'factor(group) ~ [*] + (cell:dosage) ^ 2',
FUN = function(formula, data)
glm(formula = formula,
data = data,
family = binomial(link = 'logit'),
method = 'glm.fit'),
FUNtype = 'glm',
variables = variables,
blocksize = 150,
cores = 3,
nestedParallel = TRUE,
conflevel = 95,
excludeTerms = c('cell', 'dosage'),
excludeIntercept = TRUE)
## Variable Term Beta StandardError Z P OR
## 1: gene1 gene1 0.06333797 0.0546336 1.159323 0.246325 1.065387
## 2: gene2 gene2 0.08600691 0.0587386 1.464231 0.143131 1.089814
## 3: gene3 gene3 0.05882164 0.0412150 1.427189 0.153525 1.060586
## 4: gene4 gene4 0.17931464 0.1044105 1.717401 0.085906 1.196397
## 5: gene5 gene5 0.09056917 0.0639784 1.415622 0.156886 1.094797
## ---
## 493: gene493 gene493 -0.06615597 0.0798339 -0.828670 0.407291 0.935985
## 494: gene494 gene494 0.06632122 0.0630053 1.052630 0.292511 1.068570
## 495: gene495 gene495 0.02963303 0.0426166 0.695340 0.486842 1.030076
## 496: gene496 gene496 -0.10668807 0.0699128 -1.526017 0.127006 0.898806
## 497: gene497 gene497 0.00837784 0.0547597 0.152993 0.878404 1.008413
## ORlower ORupper
## 1: 0.957201 1.18580
## 2: 0.971301 1.22279
## 3: 0.978281 1.14982
## 4: 0.974992 1.46808
## 5: 0.965773 1.24106
## ---
## 493: 0.800413 1.09452
## 494: 0.944436 1.20902
## 495: 0.947533 1.11981
## 496: 0.783711 1.03080
## 497: 0.905789 1.12266
Thanks to Horácio Montenegro and GenoMax for testing cross-platform differences, and Wolfgang Huber for providing the nudge that FDR correction needed to be implemented.
Thanks to Michael Barnes in London for introducing me to parallel processing in R.
Finally, thanks to Juan Celedón at Children’s Hospital of Pittsburgh.
Sarega Gurudas, whose suggestion led to the implementation of survey weights via svyglm.
sessionInfo()
## R version 4.0.3 (2020-10-10)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Ubuntu 16.04.7 LTS
##
## Matrix products: default
## BLAS: /usr/lib/atlas-base/atlas/libblas.so.3.0
## LAPACK: /usr/lib/atlas-base/atlas/liblapack.so.3.0
##
## locale:
## [1] LC_CTYPE=pt_BR.UTF-8 LC_NUMERIC=C
## [3] LC_TIME=en_GB.UTF-8 LC_COLLATE=pt_BR.UTF-8
## [5] LC_MONETARY=en_GB.UTF-8 LC_MESSAGES=pt_BR.UTF-8
## [7] LC_PAPER=en_GB.UTF-8 LC_NAME=C
## [9] LC_ADDRESS=C LC_TELEPHONE=C
## [11] LC_MEASUREMENT=en_GB.UTF-8 LC_IDENTIFICATION=C
##
## attached base packages:
## [1] stats4 parallel stats graphics grDevices utils datasets
## [8] methods base
##
## other attached packages:
## [1] survminer_0.4.9 ggpubr_0.4.0
## [3] ggplot2_3.3.3 GEOquery_2.56.0
## [5] DESeq2_1.28.1 magrittr_2.0.1
## [7] airway_1.8.0 SummarizedExperiment_1.18.2
## [9] DelayedArray_0.14.1 matrixStats_0.57.0
## [11] Biobase_2.48.0 GenomicRanges_1.40.0
## [13] GenomeInfoDb_1.24.2 IRanges_2.22.2
## [15] S4Vectors_0.26.1 BiocGenerics_0.34.0
## [17] RegParallel_1.11.1 arm_1.11-2
## [19] lme4_1.1-26 Matrix_1.3-2
## [21] MASS_7.3-53 survival_3.2-7
## [23] stringr_1.4.0 data.table_1.13.6
## [25] doParallel_1.0.16 iterators_1.0.13
## [27] foreach_1.5.1 knitr_1.31
##
## loaded via a namespace (and not attached):
## [1] readxl_1.3.1 backports_1.2.1 Hmisc_4.4-2
## [4] splines_4.0.3 BiocParallel_1.22.0 digest_0.6.27
## [7] htmltools_0.5.1.1 fansi_0.4.2 checkmate_2.0.0
## [10] memoise_2.0.0 cluster_2.1.0 openxlsx_4.2.3
## [13] limma_3.44.3 readr_1.4.0 annotate_1.66.0
## [16] jpeg_0.1-8.1 colorspace_2.0-0 blob_1.2.1
## [19] haven_2.3.1 xfun_0.20 dplyr_1.0.3
## [22] crayon_1.3.4 RCurl_1.98-1.2 genefilter_1.70.0
## [25] zoo_1.8-8 glue_1.4.2 gtable_0.3.0
## [28] zlibbioc_1.34.0 XVector_0.28.0 car_3.0-10
## [31] abind_1.4-5 scales_1.1.1 DBI_1.1.1
## [34] rstatix_0.7.0 Rcpp_1.0.6 xtable_1.8-4
## [37] gridtext_0.1.4 htmlTable_2.1.0 foreign_0.8-81
## [40] bit_4.0.4 km.ci_0.5-2 Formula_1.2-4
## [43] htmlwidgets_1.5.3 RColorBrewer_1.1-2 ellipsis_0.3.1
## [46] pkgconfig_2.0.3 XML_3.99-0.5 farver_2.0.3
## [49] nnet_7.3-15 locfit_1.5-9.4 tidyselect_1.1.0
## [52] labeling_0.4.2 rlang_0.4.10 AnnotationDbi_1.53.0
## [55] munsell_0.5.0 cellranger_1.1.0 tools_4.0.3
## [58] cachem_1.0.1 cli_2.2.0 generics_0.1.0
## [61] RSQLite_2.2.3 broom_0.7.5 evaluate_0.14
## [64] fastmap_1.1.0 yaml_2.2.1 bit64_4.0.5
## [67] zip_2.1.1 survMisc_0.5.5 purrr_0.3.4
## [70] nlme_3.1-151 xml2_1.3.2 compiler_4.0.3
## [73] rstudioapi_0.13 curl_4.3 png_0.1-7
## [76] ggsignif_0.6.0 tibble_3.0.1 statmod_1.4.35
## [79] geneplotter_1.66.0 stringi_1.5.3 highr_0.8
## [82] forcats_0.5.1 lattice_0.20-41 markdown_1.1
## [85] nloptr_1.2.2.2 KMsurv_0.1-5 vctrs_0.3.6
## [88] pillar_1.4.7 lifecycle_0.2.0 bitops_1.0-6
## [91] R6_2.5.0 latticeExtra_0.6-29 gridExtra_2.3
## [94] rio_0.5.16 codetools_0.2-18 boot_1.3-26
## [97] assertthat_0.2.1 withr_2.4.1 GenomeInfoDbData_1.2.3
## [100] hms_1.0.0 ggtext_0.1.1 grid_4.0.3
## [103] rpart_4.1-15 tidyr_1.1.2 coda_0.19-4
## [106] minqa_1.2.4 rmarkdown_2.6 carData_3.0-4
## [109] base64enc_0.1-3
Blighe and Lasky-Su (2018)
Blighe, K, and J Lasky-Su. 2018. “RegParallel: Standard regression functions in R enabled for parallel processing over large data-frames.” https://github.com/kevinblighe/RegParallel.