Github转存PDF: link
Github转存PDF: link
Github转存 link
课程主页:link
Lecture 1: Introduction to Reinforcement Learning link
Lecture 2: Markov Decision Processes link
Lecture 3: Planning by Dynamic Programming link
Lecture 4: Model-Free Prediction link
Lecture 5: Model-Free Control link
Lecture 6: Value Function Approximation link
Lecture 7: Policy Gradient Methods link
Lecture 8: Integrating Learning and Planning link
Lecture 9: Exploration and Exploitation link
Lecture 10: Case Study: RL in Classic Games link
Github转存 link
课程主页 link
Lecture1: Fundamentals of Reinforcement Learning link
Lecture2a: Fundamentals of Game Theory link
Lecture2b: Learning in Repeated Games link
Lecture3a: Multi-Agent Reinforcement Learning(a) link
Lecture3b: Multi-Agent Reinforcement Learning(b) link
课程主页 link
视频可以在B站上看到:link
结合他人的代码对RL的练习:link
2018 link