Skip to content

Commit

Permalink
refactor(ndt_scan_matcher): hierarchize parameters (autowarefoundatio…
Browse files Browse the repository at this point in the history
…n#6208)

* refactor(ndt_scan_matcher): hierarchize parameters

Signed-off-by: Yamato Ando <[email protected]>

* style(pre-commit): autofix

* add new lines

Signed-off-by: Yamato Ando <[email protected]>

* fix typo

Signed-off-by: Yamato Ando <[email protected]>

---------

Signed-off-by: Yamato Ando <[email protected]>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
  • Loading branch information
2 people authored and kminoda committed Feb 1, 2024
1 parent b8c980e commit 20049d1
Show file tree
Hide file tree
Showing 6 changed files with 334 additions and 248 deletions.
158 changes: 85 additions & 73 deletions localization/ndt_scan_matcher/config/ndt_scan_matcher.param.yaml
Original file line number Diff line number Diff line change
@@ -1,102 +1,114 @@
/**:
ros__parameters:
# Vehicle reference frame
base_frame: "base_link"
frame:
# Vehicle reference frame
base_frame: "base_link"

# NDT reference frame
ndt_base_frame: "ndt_base_link"
# NDT reference frame
ndt_base_frame: "ndt_base_link"

# map frame
map_frame: "map"
# Map frame
map_frame: "map"

# Subscriber queue size
input_sensor_points_queue_size: 1

# The maximum difference between two consecutive
# transformations in order to consider convergence
trans_epsilon: 0.01
ndt:
# The maximum difference between two consecutive
# transformations in order to consider convergence
trans_epsilon: 0.01

# The newton line search maximum step length
step_size: 0.1
# The newton line search maximum step length
step_size: 0.1

# The ND voxel grid resolution
resolution: 2.0
# The ND voxel grid resolution
resolution: 2.0

# The number of iterations required to calculate alignment
max_iterations: 30
# The number of iterations required to calculate alignment
max_iterations: 30

# Converged param type
# 0=TRANSFORM_PROBABILITY, 1=NEAREST_VOXEL_TRANSFORMATION_LIKELIHOOD
converged_param_type: 1
# Number of threads used for parallel computing
num_threads: 4

# If converged_param_type is 0
# Threshold for deciding whether to trust the estimation result
converged_param_transform_probability: 3.0
regularization:
enable: false

# If converged_param_type is 1
# Threshold for deciding whether to trust the estimation result
converged_param_nearest_voxel_transformation_likelihood: 2.3
# Regularization scale factor
scale_factor: 0.01

# The number of particles to estimate initial pose
initial_estimate_particles_num: 200

# The number of initial random trials in the TPE (Tree-Structured Parzen Estimator).
# This value should be equal to or less than 'initial_estimate_particles_num' and more than 0.
# If it is equal to 'initial_estimate_particles_num', the search will be the same as a full random search.
n_startup_trials: 20
initial_pose_estimation:
# The number of particles to estimate initial pose
particles_num: 200

# Tolerance of timestamp difference between current time and sensor pointcloud. [sec]
lidar_topic_timeout_sec: 1.0
# The number of initial random trials in the TPE (Tree-Structured Parzen Estimator).
# This value should be equal to or less than 'initial_estimate_particles_num' and more than 0.
# If it is equal to 'initial_estimate_particles_num', the search will be the same as a full random search.
n_startup_trials: 20

# Tolerance of timestamp difference between initial_pose and sensor pointcloud. [sec]
initial_pose_timeout_sec: 1.0

# Tolerance of distance difference between two initial poses used for linear interpolation. [m]
initial_pose_distance_tolerance_m: 10.0
validation:
# Tolerance of timestamp difference between current time and sensor pointcloud. [sec]
lidar_topic_timeout_sec: 1.0

# The execution time which means probably NDT cannot matches scans properly. [ms]
critical_upper_bound_exe_time_ms: 100.0
# Tolerance of timestamp difference between initial_pose and sensor pointcloud. [sec]
initial_pose_timeout_sec: 1.0

# Number of threads used for parallel computing
num_threads: 4
# Tolerance of distance difference between two initial poses used for linear interpolation. [m]
initial_pose_distance_tolerance_m: 10.0

# The covariance of output pose
# Note that this covariance matrix is empirically derived
output_pose_covariance:
[
0.0225, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0225, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0225, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.000625, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.000625, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.000625,
]
# The execution time which means probably NDT cannot matches scans properly. [ms]
critical_upper_bound_exe_time_ms: 100.0

# 2D Real-time covariance estimation with multiple searches (output_pose_covariance is the minimum value)
use_covariance_estimation: false

# Offset arrangement in covariance estimation [m]
# initial_pose_offset_model_x & initial_pose_offset_model_y must have the same number of elements.
initial_pose_offset_model_x: [0.0, 0.0, 0.5, -0.5, 1.0, -1.0]
initial_pose_offset_model_y: [0.5, -0.5, 0.0, 0.0, 0.0, 0.0]
score_estimation:
# Converged param type
# 0=TRANSFORM_PROBABILITY, 1=NEAREST_VOXEL_TRANSFORMATION_LIKELIHOOD
converged_param_type: 1

# Regularization switch
regularization_enabled: false
# If converged_param_type is 0
# Threshold for deciding whether to trust the estimation result
converged_param_transform_probability: 3.0

# Regularization scale factor
regularization_scale_factor: 0.01
# If converged_param_type is 1
# Threshold for deciding whether to trust the estimation result
converged_param_nearest_voxel_transformation_likelihood: 2.3

# Dynamic map loading distance
dynamic_map_loading_update_distance: 20.0
# Scan matching score based on no ground LiDAR scan
no_ground_points:
enable: false

# Dynamic map loading loading radius
dynamic_map_loading_map_radius: 150.0
# If lidar_point.z - base_link.z <= this threshold , the point will be removed
z_margin_for_ground_removal: 0.8

# Radius of input LiDAR range (used for diagnostics of dynamic map loading)
lidar_radius: 100.0

# A flag for using scan matching score based on no ground LiDAR scan
estimate_scores_by_no_ground_points: false
covariance:
# The covariance of output pose
# Note that this covariance matrix is empirically derived
output_pose_covariance:
[
0.0225, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0225, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0225, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.000625, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.000625, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.000625,
]

# If lidar_point.z - base_link.z <= this threshold , the point will be removed
z_margin_for_ground_removal: 0.8
# 2D Real-time covariance estimation with multiple searches (output_pose_covariance is the minimum value)
covariance_estimation:
enable: false

# Offset arrangement in covariance estimation [m]
# initial_pose_offset_model_x & initial_pose_offset_model_y must have the same number of elements.
initial_pose_offset_model_x: [0.0, 0.0, 0.5, -0.5, 1.0, -1.0]
initial_pose_offset_model_y: [0.5, -0.5, 0.0, 0.0, 0.0, 0.0]


dynamic_map_loading:
# Dynamic map loading distance
update_distance: 20.0

# Dynamic map loading loading radius
map_radius: 150.0

# Radius of input LiDAR range (used for diagnostics of dynamic map loading)
lidar_radius: 100.0
Original file line number Diff line number Diff line change
@@ -0,0 +1,173 @@
// Copyright 2024 Autoware Foundation
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use node file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#ifndef NDT_SCAN_MATCHER__HYPER_PARAMETERS_HPP_
#define NDT_SCAN_MATCHER__HYPER_PARAMETERS_HPP_

#include <rclcpp/rclcpp.hpp>

#include <multigrid_pclomp/multigrid_ndt_omp.h>

#include <algorithm>
#include <string>
#include <vector>

enum class ConvergedParamType {
TRANSFORM_PROBABILITY = 0,
NEAREST_VOXEL_TRANSFORMATION_LIKELIHOOD = 1
};

struct HyperParameters
{
struct Frame
{
std::string base_frame;
std::string ndt_base_frame;
std::string map_frame;
} frame;

pclomp::NdtParams ndt;
bool ndt_regularization_enable;

struct InitialPoseEstimation
{
int64_t particles_num;
int64_t n_startup_trials;
} initial_pose_estimation;

struct Validation
{
double lidar_topic_timeout_sec;
double initial_pose_timeout_sec;
double initial_pose_distance_tolerance_m;
double critical_upper_bound_exe_time_ms;
} validation;

struct ScoreEstimation
{
ConvergedParamType converged_param_type;
double converged_param_transform_probability;
double converged_param_nearest_voxel_transformation_likelihood;
struct NoGroundPoints
{
bool enable;
double z_margin_for_ground_removal;
} no_ground_points;
} score_estimation;

struct Covariance
{
std::array<double, 36> output_pose_covariance;

struct CovarianceEstimation
{
bool enable;
std::vector<Eigen::Vector2d> initial_pose_offset_model;
} covariance_estimation;
} covariance;

struct DynamicMapLoading
{
double update_distance;
double map_radius;
double lidar_radius;
} dynamic_map_loading;

public:
explicit HyperParameters(rclcpp::Node * node)
{
frame.base_frame = node->declare_parameter<std::string>("frame.base_frame");
frame.ndt_base_frame = node->declare_parameter<std::string>("frame.ndt_base_frame");
frame.map_frame = node->declare_parameter<std::string>("frame.map_frame");

ndt.trans_epsilon = node->declare_parameter<double>("ndt.trans_epsilon");
ndt.step_size = node->declare_parameter<double>("ndt.step_size");
ndt.resolution = node->declare_parameter<double>("ndt.resolution");
ndt.max_iterations = static_cast<int>(node->declare_parameter<int64_t>("ndt.max_iterations"));
ndt.num_threads = static_cast<int>(node->declare_parameter<int64_t>("ndt.num_threads"));
ndt.num_threads = std::max(ndt.num_threads, 1);
ndt_regularization_enable = node->declare_parameter<bool>("ndt.regularization.enable");
ndt.regularization_scale_factor =
static_cast<float>(node->declare_parameter<float>("ndt.regularization.scale_factor"));

initial_pose_estimation.particles_num =
node->declare_parameter<int64_t>("initial_pose_estimation.particles_num");
initial_pose_estimation.n_startup_trials =
node->declare_parameter<int64_t>("initial_pose_estimation.n_startup_trials");

validation.lidar_topic_timeout_sec =
node->declare_parameter<double>("validation.lidar_topic_timeout_sec");
validation.initial_pose_timeout_sec =
node->declare_parameter<double>("validation.initial_pose_timeout_sec");
validation.initial_pose_distance_tolerance_m =
node->declare_parameter<double>("validation.initial_pose_distance_tolerance_m");
validation.critical_upper_bound_exe_time_ms =
node->declare_parameter<double>("validation.critical_upper_bound_exe_time_ms");

const int64_t converged_param_type_tmp =
node->declare_parameter<int64_t>("score_estimation.converged_param_type");
score_estimation.converged_param_type =
static_cast<ConvergedParamType>(converged_param_type_tmp);
score_estimation.converged_param_transform_probability =
node->declare_parameter<double>("score_estimation.converged_param_transform_probability");
score_estimation.converged_param_nearest_voxel_transformation_likelihood =
node->declare_parameter<double>(
"score_estimation.converged_param_nearest_voxel_transformation_likelihood");
score_estimation.no_ground_points.enable =
node->declare_parameter<bool>("score_estimation.no_ground_points.enable");
score_estimation.no_ground_points.z_margin_for_ground_removal = node->declare_parameter<double>(
"score_estimation.no_ground_points.z_margin_for_ground_removal");

std::vector<double> output_pose_covariance =
node->declare_parameter<std::vector<double>>("covariance.output_pose_covariance");
for (std::size_t i = 0; i < output_pose_covariance.size(); ++i) {
covariance.output_pose_covariance[i] = output_pose_covariance[i];
}
covariance.covariance_estimation.enable =
node->declare_parameter<bool>("covariance.covariance_estimation.enable");
if (covariance.covariance_estimation.enable) {
std::vector<double> initial_pose_offset_model_x =
node->declare_parameter<std::vector<double>>(
"covariance.covariance_estimation.initial_pose_offset_model_x");
std::vector<double> initial_pose_offset_model_y =
node->declare_parameter<std::vector<double>>(
"covariance.covariance_estimation.initial_pose_offset_model_y");

if (initial_pose_offset_model_x.size() == initial_pose_offset_model_y.size()) {
const size_t size = initial_pose_offset_model_x.size();
covariance.covariance_estimation.initial_pose_offset_model.resize(size);
for (size_t i = 0; i < size; i++) {
covariance.covariance_estimation.initial_pose_offset_model[i].x() =
initial_pose_offset_model_x[i];
covariance.covariance_estimation.initial_pose_offset_model[i].y() =
initial_pose_offset_model_y[i];
}
} else {
RCLCPP_WARN(
node->get_logger(),
"Invalid initial pose offset model parameters. Disable covariance estimation.");
covariance.covariance_estimation.enable = false;
}
}

dynamic_map_loading.update_distance =
node->declare_parameter<double>("dynamic_map_loading.update_distance");
dynamic_map_loading.map_radius =
node->declare_parameter<double>("dynamic_map_loading.map_radius");
dynamic_map_loading.lidar_radius =
node->declare_parameter<double>("dynamic_map_loading.lidar_radius");
}
};

#endif // NDT_SCAN_MATCHER__HYPER_PARAMETERS_HPP_
Original file line number Diff line number Diff line change
Expand Up @@ -16,6 +16,7 @@
#define NDT_SCAN_MATCHER__MAP_UPDATE_MODULE_HPP_

#include "localization_util/util_func.hpp"
#include "ndt_scan_matcher/hyper_parameters.hpp"
#include "ndt_scan_matcher/particle.hpp"

#include <rclcpp/rclcpp.hpp>
Expand Down Expand Up @@ -47,7 +48,8 @@ class MapUpdateModule
public:
MapUpdateModule(
rclcpp::Node * node, std::mutex * ndt_ptr_mutex,
std::shared_ptr<NormalDistributionsTransform> ndt_ptr);
std::shared_ptr<NormalDistributionsTransform> ndt_ptr,
HyperParameters::DynamicMapLoading param);

private:
friend class NDTScanMatcher;
Expand All @@ -70,9 +72,8 @@ class MapUpdateModule
rclcpp::Clock::SharedPtr clock_;

std::optional<geometry_msgs::msg::Point> last_update_position_ = std::nullopt;
const double dynamic_map_loading_update_distance_;
const double dynamic_map_loading_map_radius_;
const double lidar_radius_;

HyperParameters::DynamicMapLoading param_;
};

#endif // NDT_SCAN_MATCHER__MAP_UPDATE_MODULE_HPP_
Loading

0 comments on commit 20049d1

Please sign in to comment.