forked from kookmin-sw/cap-template
-
Notifications
You must be signed in to change notification settings - Fork 2
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #6 from kookmin-sw/feature/skin_detect
Feature/skin detect
- Loading branch information
Showing
8 changed files
with
757 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1 @@ | ||
.DS_store |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,125 @@ | ||
import dlib | ||
import cv2 | ||
import numpy as np | ||
|
||
predictor_file = './shape_predictor_68_face_landmarks.dat' | ||
image_file = './test/kimmingyu.jpeg' | ||
|
||
ALL = list(range(0, 68)) | ||
|
||
img = cv2.imread(image_file) | ||
|
||
# 얼굴의 landmark 뽑아내는 함수 | ||
def landmark_extract(img, predictor_file): | ||
detector = dlib.get_frontal_face_detector() | ||
predictor = dlib.shape_predictor(predictor_file) | ||
|
||
gray_img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) | ||
rects = detector(gray_img, 1) | ||
|
||
for (i, rect) in enumerate(rects): | ||
points = np.matrix([[p.x, p.y] for p in predictor(gray_img, rect).parts()]) | ||
|
||
left, right, top, bottom = rect.left(), rect.right(), rect.top(), rect.bottom() | ||
|
||
return points, left, right, top, bottom | ||
|
||
# pos에 landmark 위치 정보 담겨있음 | ||
RIGHT_EYE = list(range(36, 42)) | ||
LEFT_EYE = list(range(42, 48)) | ||
MOUTH = list(range(48, 68)) | ||
NOSE = list(range(27, 36)) | ||
EYEBROWS = list(range(17, 27)) | ||
JAWLINE = list(range(1, 17)) | ||
ALL = list(range(0, 68)) | ||
EYES = list(range(36, 48)) | ||
|
||
# 두 점 거리 찾기 | ||
def find_distance(left, right): | ||
a = np.abs(left[0] - right[0]) | ||
b = np.abs(left[1] - right[1]) | ||
return int(np.sqrt(np.power(a, 2) + np.power(b, 2))) | ||
|
||
# 두 점 기울기 | ||
def find_slope(left, right): | ||
x_increment = right[0] - left[0] | ||
y_increment = right[1] - left[1] | ||
return x_increment / y_increment | ||
|
||
# 두 점의 중심 | ||
def find_center(left, right): | ||
return (int((left[0] + right[0]) / 2), int((left[1] + right[1]) / 2)) | ||
|
||
# 눈 부분 추출하기 | ||
def eye_ousting(pos, img): | ||
left_eye_pos = [(x[0], x[1]) for x in pos[LEFT_EYE].tolist()] | ||
right_eye_pos = [(x[0], x[1]) for x in pos[RIGHT_EYE].tolist()] | ||
|
||
# le_width = find_distance(left_eye_pos[0], left_eye_pos[3]) | ||
# ri_width = find_distance(right_eye_pos[0], right_eye_pos[3]) | ||
|
||
# le_height = find_distance(left_eye_pos[1], left_eye_pos[-2]) | ||
# ri_height = find_distance(right_eye_pos[1], right_eye_pos[-2]) | ||
|
||
# le_center = find_center(left_eye_pos[0], left_eye_pos[3]) | ||
# ri_center = find_center(right_eye_pos[0], right_eye_pos[3]) | ||
|
||
# left_slope = find_slope(left_eye_pos[0], left_eye_pos[3]) | ||
# right_slope = find_slope(right_eye_pos[0], right_eye_pos[3]) | ||
|
||
# left_axes_len = (le_width, le_height) | ||
# right_axes_len = (ri_width, ri_height) | ||
|
||
# mask = np.zeros_like(img[:, :]) | ||
# cv2.ellipse(img=mask, center=le_center, axes=left_axes_len, angle=left_slope, startAngle=0, endAngle=360, color=black, thickness=-1) | ||
# cv2.ellipse(img=mask, center=ri_center, axes=right_axes_len, angle=right_slope, startAngle=0, endAngle=360, color=black, thickness=-1) | ||
|
||
left_pts = np.array(left_eye_pos, np.int32) | ||
left_pts = left_pts.reshape((-1, 1, 2)) | ||
|
||
right_pts = np.array(right_eye_pos, np.int32) | ||
right_pts = right_pts.reshape((-1, 1, 2)) | ||
|
||
res = img.copy() | ||
|
||
cv2.fillPoly(res, [left_pts], color=(0,0,0)) | ||
cv2.fillPoly(res, [right_pts], color=(0,0,0)) | ||
|
||
# arr = np.array([0, 0, 0], dtype=np.uint8) | ||
# mask = cv2.inRange(mask, arr, arr) | ||
# res = cv2.bitwise_and(img, img, mask=mask) | ||
|
||
return res | ||
|
||
|
||
pos, left, right, top, bottom = landmark_extract(img, predictor_file) | ||
|
||
eye_ousting_img = eye_ousting(pos, img) | ||
|
||
face_original_img = img[top : bottom, left:right] | ||
face_img = eye_ousting_img[top : bottom, left:right] | ||
|
||
|
||
# https://www.researchgate.net/publication/262371199_Explicit_image_detection_using_YCbCr_space_color_model_as_skin_detection | ||
# lower | ||
lower = np.array([0, 133, 77], dtype=np.uint8) | ||
|
||
# upper | ||
upper = np.array([255, 173, 127], dtype=np.uint8) | ||
|
||
|
||
face_image_ycbcr = cv2.cvtColor(face_img, cv2.COLOR_BGR2YCrCb) | ||
face_skin_mask = cv2.inRange(face_image_ycbcr, lower, upper) | ||
|
||
# cv2.imshow("test", face_skin_mask) | ||
|
||
|
||
face_skin_img = cv2.bitwise_and(face_img, face_img, mask=face_skin_mask) | ||
|
||
image_horizontal = np.hstack((face_original_img, face_skin_img)) | ||
|
||
cv2.imshow("Face Landmark", image_horizontal) | ||
key = cv2.waitKey(0) | ||
|
||
if key == ord('q'): | ||
cv2.destroyAllWindows() |
Large diffs are not rendered by default.
Oops, something went wrong.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,32 @@ | ||
import numpy as np | ||
import cv2 | ||
|
||
img_path = "./test/kimmingyu.jpeg" | ||
|
||
img = cv2.imread(img_path) | ||
|
||
# convert BGR to hsv | ||
img_hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV) | ||
|
||
mask_hsv = cv2.inRange(img_hsv, (0, 15, 0), (17, 170, 255)) | ||
mask_hsv = cv2.morphologyEx(mask_hsv, cv2.MORPH_OPEN, np.ones((3, 3), np.uint8)) | ||
|
||
img_YCrCb = cv2.cvtColor(img, cv2.COLOR_BGR2YCrCb) | ||
|
||
mask_YCrCb = cv2.inRange(img_YCrCb, (0, 133, 77), (255, 173, 127)) | ||
mask_YCrCb = cv2.morphologyEx(mask_YCrCb, cv2.MORPH_OPEN, np.ones((3, 3), np.uint8)) | ||
|
||
mask = cv2.bitwise_and(mask_YCrCb, mask_hsv) | ||
mask = cv2.medianBlur(mask, 3) | ||
mask = cv2.morphologyEx(mask, cv2.MORPH_OPEN, np.ones((4, 4), np.uint8)) | ||
|
||
res = cv2.bitwise_and(img, img, mask=mask) | ||
|
||
res_and_origin = np.hstack((res, img)) | ||
|
||
cv2.imshow("res_and_origin", res_and_origin) | ||
|
||
key = cv2.waitKey(0) | ||
|
||
if key == ord('q'): | ||
cv2.destroyAllWindows() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1 @@ | ||
|
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.