This project is a personnel experimentation that take a the data-set zoo to try to classify it using supervised learning.
- Python: 2.7
- Sklearn version: 0.18
Some results running the script for 600 iteration using one hidden layer:
Id | Neurone | Momentum | Learning rate | Error rate | mean-squared error |
---|---|---|---|---|---|
1 | 20 | 0.6 | 0.15 | 0.23 | 1.88 |
2 | 20 | 0.1 | 0.2 | 0.25 | 1.96 |
3 | 15 | 0.01 | 0.4 | 0.46 | 2.84 |
4 | 15 | 0.6 | 0.08 | 0.25 | 1.32 |
5 | 10 | 0.72 | 0.025 | 0.12 | 0.625 |
6 | 10 | 0.5 | 0.01 | 0.42 | 1.33 |
7 | 10 | 0.5 | 0.4 | 0.73 | 3.38 |
8 | 10 | 0.5 | 0.4 | 0.45 | 1.77 |
9 | 5 | 0.65 | 0.15 | 0.43 | 4.06 |
10 | 5 | 0.67 | 0.2 | 0.47 | 5.04 |
You will find the results of the decision tree following this link Decision Tree Results