Skip to content

Network analysis experiment on echo-chamber relative to COVID-19 tweets.

Notifications You must be signed in to change notification settings

krun55/Echo-chamber_COVID-19_edition

 
 

Repository files navigation

Mapping the echo-chamber: COVID-19 edition

Network analysis experiment for the "Web Information Retrieval" course at La Sapienza University of Rome.

The goal is to find the polarization of the communities inside the Twitter social network regarding Coronavirus related topics. Indeed, with social media, misinformation about COVID-19, or vaccines, for example, can reach huge audiences and circulate very quickly. Therefore, it is crucial to find ways to recognize reliable information.

For the experiment documents:

Data & methodology

Network seed dataset:

  • The "Coronavirus Tweet Ids" dataset from Harvard University [version 1]
    • Contains the ids of 51,798,932 tweets related to Coronavirus or COVID-19;
    • Collected between March 3, 2020 and March 19, 2020 from the Twitter API using Social Feed Manager;
    • Collected using the POST statuses/filter method of the Twitter Stream API, using the track parameter with the following keywords: #Coronavirus, #Coronaoutbreak, #COVID19;

Once preprocessed the dataset, we executed the following steps:

  1. Build the users graph
    • node ⇒ user
    • edge ⇒ interaction or common domain cited (undirected and weighted)
  2. Louvain’s method to extract communities from large networks
  3. Word embedding and semantic deviation

Authors


Note: We do not aim to open a debate on social media misinformation during the pandemic period, indeed our analysis considers only partial information. Thus, take in consideration that our result cannot be used as a real estimator.

About

Network analysis experiment on echo-chamber relative to COVID-19 tweets.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Jupyter Notebook 100.0%