Skip to content

Commit

Permalink
Add example of helm chart for vllm deployment on k8s (vllm-project#9199)
Browse files Browse the repository at this point in the history
Signed-off-by: Maxime Fournioux <[email protected]>
  • Loading branch information
mfournioux authored Dec 10, 2024
1 parent 82c73fd commit fe2e10c
Show file tree
Hide file tree
Showing 20 changed files with 1,206 additions and 0 deletions.
81 changes: 81 additions & 0 deletions .github/workflows/lint-and-deploy.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,81 @@
name: Lint and Deploy Charts

on: pull_request

jobs:
lint-and-deploy:
runs-on: ubuntu-latest
steps:
- name: Checkout
uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 # v4.2.2
with:
fetch-depth: 0

- name: Set up Helm
uses: azure/setup-helm@fe7b79cd5ee1e45176fcad797de68ecaf3ca4814 # v4.2.0
with:
version: v3.14.4

#Python is required because ct lint runs Yamale and yamllint which require Python.
- uses: actions/setup-python@0b93645e9fea7318ecaed2b359559ac225c90a2b # v5.3.0
with:
python-version: '3.13'

- name: Set up chart-testing
uses: helm/chart-testing-action@e6669bcd63d7cb57cb4380c33043eebe5d111992 # v2.6.1
with:
version: v3.10.1

- name: Run chart-testing (lint)
run: ct lint --target-branch ${{ github.event.repository.default_branch }} --chart-dirs examples/chart-helm --charts examples/chart-helm

- name: Setup minio
run: |
docker network create vllm-net
docker run -d -p 9000:9000 --name minio --net vllm-net \
-e "MINIO_ACCESS_KEY=minioadmin" \
-e "MINIO_SECRET_KEY=minioadmin" \
-v /tmp/data:/data \
-v /tmp/config:/root/.minio \
minio/minio server /data
export AWS_ACCESS_KEY_ID=minioadmin
export AWS_SECRET_ACCESS_KEY=minioadmin
export AWS_EC2_METADATA_DISABLED=true
mkdir opt-125m
cd opt-125m && curl -O -Ls "https://huggingface.co/facebook/opt-125m/resolve/main/{pytorch_model.bin,config.json,generation_config.json,merges.txt,special_tokens_map.json,tokenizer_config.json,vocab.json}" && cd ..
aws --endpoint-url http://127.0.0.1:9000/ s3 mb s3://testbucket
aws --endpoint-url http://127.0.0.1:9000/ s3 cp opt-125m/ s3://testbucket/opt-125m --recursive
- name: Create kind cluster
uses: helm/kind-action@0025e74a8c7512023d06dc019c617aa3cf561fde # v1.10.0

- name: Build the Docker image vllm cpu
run: docker buildx build -f Dockerfile.cpu -t vllm-cpu-env .

- name: Configuration of docker images, network and namespace for the kind cluster
run: |
docker pull amazon/aws-cli:2.6.4
kind load docker-image amazon/aws-cli:2.6.4 --name chart-testing
kind load docker-image vllm-cpu-env:latest --name chart-testing
docker network connect vllm-net "$(docker ps -aqf "name=chart-testing-control-plane")"
kubectl create ns ns-vllm
- name: Run chart-testing (install)
run: |
export AWS_ACCESS_KEY_ID=minioadmin
export AWS_SECRET_ACCESS_KEY=minioadmin
helm install --wait --wait-for-jobs --timeout 5m0s --debug --create-namespace --namespace=ns-vllm test-vllm examples/chart-helm -f examples/chart-helm/values.yaml --set secrets.s3endpoint=http://minio:9000 --set secrets.s3bucketname=testbucket --set secrets.s3accesskeyid=$AWS_ACCESS_KEY_ID --set secrets.s3accesskey=$AWS_SECRET_ACCESS_KEY --set resources.requests.cpu=1 --set resources.requests.memory=4Gi --set resources.limits.cpu=2 --set resources.limits.memory=5Gi --set image.env[0].name=VLLM_CPU_KVCACHE_SPACE --set image.env[1].name=VLLM_LOGGING_LEVEL --set-string image.env[0].value="1" --set-string image.env[1].value="DEBUG" --set-string extraInit.s3modelpath="opt-125m/" --set-string 'resources.limits.nvidia\.com/gpu=0' --set-string 'resources.requests.nvidia\.com/gpu=0' --set-string image.repository="vllm-cpu-env"
- name: curl test
run: |
kubectl -n ns-vllm port-forward service/test-vllm-service 8001:80 &
sleep 10
CODE="$(curl -v -f --location http://localhost:8001/v1/completions \
--header "Content-Type: application/json" \
--data '{
"model": "opt-125m",
"prompt": "San Francisco is a",
"max_tokens": 7,
"temperature": 0
}'):$CODE"
echo "$CODE"
1 change: 1 addition & 0 deletions docs/source/index.rst
Original file line number Diff line number Diff line change
Expand Up @@ -82,6 +82,7 @@ Documentation
serving/openai_compatible_server
serving/deploying_with_docker
serving/deploying_with_k8s
serving/deploying_with_helm
serving/deploying_with_nginx
serving/distributed_serving
serving/metrics
Expand Down
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
253 changes: 253 additions & 0 deletions docs/source/serving/deploying_with_helm.rst
Original file line number Diff line number Diff line change
@@ -0,0 +1,253 @@
.. _deploying_with_helm:

Deploying with Helm
===================

A Helm chart to deploy vLLM for Kubernetes

Helm is a package manager for Kubernetes. It will help you to deploy vLLM on k8s and automate the deployment of vLLMm Kubernetes applications. With Helm, you can deploy the same framework architecture with different configurations to multiple namespaces by overriding variables values.

This guide will walk you through the process of deploying vLLM with Helm, including the necessary prerequisites, steps for helm install and documentation on architecture and values file.

Prerequisites
-------------
Before you begin, ensure that you have the following:

- A running Kubernetes cluster
- NVIDIA Kubernetes Device Plugin (``k8s-device-plugin``): This can be found at `https://github.com/NVIDIA/k8s-device-plugin <https://github.com/NVIDIA/k8s-device-plugin>`__
- Available GPU resources in your cluster
- S3 with the model which will be deployed

Installing the chart
--------------------

To install the chart with the release name ``test-vllm``:

.. code-block:: console
helm upgrade --install --create-namespace --namespace=ns-vllm test-vllm . -f values.yaml --set secrets.s3endpoint=$ACCESS_POINT --set secrets.s3buckername=$BUCKET --set secrets.s3accesskeyid=$ACCESS_KEY --set secrets.s3accesskey=$SECRET_KEY
Uninstalling the Chart
----------------------

To uninstall the ``test-vllm`` deployment:

.. code-block:: console
helm uninstall test-vllm --namespace=ns-vllm
The command removes all the Kubernetes components associated with the
chart **including persistent volumes** and deletes the release.

Architecture
------------

.. image:: architecture_helm_deployment.png

Values
------

.. list-table:: Values
:widths: 25 25 25 25
:header-rows: 1

* - Key
- Type
- Default
- Description
* - autoscaling
- object
- {"enabled":false,"maxReplicas":100,"minReplicas":1,"targetCPUUtilizationPercentage":80}
- Autoscaling configuration
* - autoscaling.enabled
- bool
- false
- Enable autoscaling
* - autoscaling.maxReplicas
- int
- 100
- Maximum replicas
* - autoscaling.minReplicas
- int
- 1
- Minimum replicas
* - autoscaling.targetCPUUtilizationPercentage
- int
- 80
- Target CPU utilization for autoscaling
* - configs
- object
- {}
- Configmap
* - containerPort
- int
- 8000
- Container port
* - customObjects
- list
- []
- Custom Objects configuration
* - deploymentStrategy
- object
- {}
- Deployment strategy configuration
* - externalConfigs
- list
- []
- External configuration
* - extraContainers
- list
- []
- Additional containers configuration
* - extraInit
- object
- {"pvcStorage":"1Gi","s3modelpath":"relative_s3_model_path/opt-125m", "awsEc2MetadataDisabled": true}
- Additional configuration for the init container
* - extraInit.pvcStorage
- string
- "50Gi"
- Storage size of the s3
* - extraInit.s3modelpath
- string
- "relative_s3_model_path/opt-125m"
- Path of the model on the s3 which hosts model weights and config files
* - extraInit.awsEc2MetadataDisabled
- boolean
- true
- Disables the use of the Amazon EC2 instance metadata service
* - extraPorts
- list
- []
- Additional ports configuration
* - gpuModels
- list
- ["TYPE_GPU_USED"]
- Type of gpu used
* - image
- object
- {"command":["vllm","serve","/data/","--served-model-name","opt-125m","--host","0.0.0.0","--port","8000"],"repository":"vllm/vllm-openai","tag":"latest"}
- Image configuration
* - image.command
- list
- ["vllm","serve","/data/","--served-model-name","opt-125m","--host","0.0.0.0","--port","8000"]
- Container launch command
* - image.repository
- string
- "vllm/vllm-openai"
- Image repository
* - image.tag
- string
- "latest"
- Image tag
* - livenessProbe
- object
- {"failureThreshold":3,"httpGet":{"path":"/health","port":8000},"initialDelaySeconds":15,"periodSeconds":10}
- Liveness probe configuration
* - livenessProbe.failureThreshold
- int
- 3
- Number of times after which if a probe fails in a row, Kubernetes considers that the overall check has failed: the container is not alive
* - livenessProbe.httpGet
- object
- {"path":"/health","port":8000}
- Configuration of the Kubelet http request on the server
* - livenessProbe.httpGet.path
- string
- "/health"
- Path to access on the HTTP server
* - livenessProbe.httpGet.port
- int
- 8000
- Name or number of the port to access on the container, on which the server is listening
* - livenessProbe.initialDelaySeconds
- int
- 15
- Number of seconds after the container has started before liveness probe is initiated
* - livenessProbe.periodSeconds
- int
- 10
- How often (in seconds) to perform the liveness probe
* - maxUnavailablePodDisruptionBudget
- string
- ""
- Disruption Budget Configuration
* - readinessProbe
- object
- {"failureThreshold":3,"httpGet":{"path":"/health","port":8000},"initialDelaySeconds":5,"periodSeconds":5}
- Readiness probe configuration
* - readinessProbe.failureThreshold
- int
- 3
- Number of times after which if a probe fails in a row, Kubernetes considers that the overall check has failed: the container is not ready
* - readinessProbe.httpGet
- object
- {"path":"/health","port":8000}
- Configuration of the Kubelet http request on the server
* - readinessProbe.httpGet.path
- string
- "/health"
- Path to access on the HTTP server
* - readinessProbe.httpGet.port
- int
- 8000
- Name or number of the port to access on the container, on which the server is listening
* - readinessProbe.initialDelaySeconds
- int
- 5
- Number of seconds after the container has started before readiness probe is initiated
* - readinessProbe.periodSeconds
- int
- 5
- How often (in seconds) to perform the readiness probe
* - replicaCount
- int
- 1
- Number of replicas
* - resources
- object
- {"limits":{"cpu":4,"memory":"16Gi","nvidia.com/gpu":1},"requests":{"cpu":4,"memory":"16Gi","nvidia.com/gpu":1}}
- Resource configuration
* - resources.limits."nvidia.com/gpu"
- int
- 1
- Number of gpus used
* - resources.limits.cpu
- int
- 4
- Number of CPUs
* - resources.limits.memory
- string
- "16Gi"
- CPU memory configuration
* - resources.requests."nvidia.com/gpu"
- int
- 1
- Number of gpus used
* - resources.requests.cpu
- int
- 4
- Number of CPUs
* - resources.requests.memory
- string
- "16Gi"
- CPU memory configuration
* - secrets
- object
- {}
- Secrets configuration
* - serviceName
- string
-
- Service name
* - servicePort
- int
- 80
- Service port
* - labels.environment
- string
- test
- Environment name
* - labels.release
- string
- test
- Release name
6 changes: 6 additions & 0 deletions examples/chart-helm/.helmignore
Original file line number Diff line number Diff line change
@@ -0,0 +1,6 @@
*.png
.git/
ct.yaml
lintconf.yaml
values.schema.json
/workflows
21 changes: 21 additions & 0 deletions examples/chart-helm/Chart.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,21 @@
apiVersion: v2
name: chart-vllm
description: Chart vllm

# A chart can be either an 'application' or a 'library' chart.
#
# Application charts are a collection of templates that can be packaged into versioned archives
# to be deployed.
#
# Library charts provide useful utilities or functions for the chart developer. They're included as
# a dependency of application charts to inject those utilities and functions into the rendering
# pipeline. Library charts do not define any templates and therefore cannot be deployed.
type: application

# This is the chart version. This version number should be incremented each time you make changes
# to the chart and its templates, including the app version.
# Versions are expected to follow Semantic Versioning (https://semver.org/)
version: 0.0.1

maintainers:
- name: mfournioux
3 changes: 3 additions & 0 deletions examples/chart-helm/ct.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,3 @@
chart-dirs:
- charts
validate-maintainers: false
Loading

0 comments on commit fe2e10c

Please sign in to comment.