Skip to content

Commit

Permalink
Merge pull request #1397 from fspindle/fix_quality_rules_8
Browse files Browse the repository at this point in the history
Apply misra c++ quality rules
  • Loading branch information
fspindle authored May 7, 2024
2 parents 2fc7f61 + 666dfe9 commit 6591281
Show file tree
Hide file tree
Showing 36 changed files with 415 additions and 365 deletions.
8 changes: 4 additions & 4 deletions modules/core/include/visp3/core/vpCannyEdgeDetection.h
Original file line number Diff line number Diff line change
Expand Up @@ -110,7 +110,7 @@ class VISP_EXPORT vpCannyEdgeDetection
* Then, compute the x-axis and y-axis gradients of the image.
* \param[in] I : The image we want to compute the gradients.
*/
void performFilteringAndGradientComputation(const vpImage<unsigned char> &I);
void computeFilteringAndGradient(const vpImage<unsigned char> &I);

/**
* \brief Step 3: Edge thining.
Expand Down Expand Up @@ -214,9 +214,9 @@ class VISP_EXPORT vpCannyEdgeDetection
*/
friend inline void from_json(const nlohmann::json &j, vpCannyEdgeDetection &detector)
{
std::string filteringAndGradientName = vpImageFilter::vpCannyFilteringAndGradientTypeToString(detector.m_filteringAndGradientType);
std::string filteringAndGradientName = vpImageFilter::vpCannyFiltAndGradTypeToStr(detector.m_filteringAndGradientType);
filteringAndGradientName = j.value("filteringAndGradientType", filteringAndGradientName);
detector.m_filteringAndGradientType = vpImageFilter::vpCannyFilteringAndGradientTypeFromString(filteringAndGradientName);
detector.m_filteringAndGradientType = vpImageFilter::vpCannyFiltAndGradTypeFromStr(filteringAndGradientName);
detector.m_gaussianKernelSize = j.value("gaussianSize", detector.m_gaussianKernelSize);
detector.m_gaussianStdev = j.value("gaussianStdev", detector.m_gaussianStdev);
detector.m_lowerThreshold = j.value("lowerThreshold", detector.m_lowerThreshold);
Expand All @@ -234,7 +234,7 @@ class VISP_EXPORT vpCannyEdgeDetection
*/
friend inline void to_json(nlohmann::json &j, const vpCannyEdgeDetection &detector)
{
std::string filteringAndGradientName = vpImageFilter::vpCannyFilteringAndGradientTypeToString(detector.m_filteringAndGradientType);
std::string filteringAndGradientName = vpImageFilter::vpCannyFiltAndGradTypeToStr(detector.m_filteringAndGradientType);
j = nlohmann::json {
{"filteringAndGradientType", filteringAndGradientName},
{"gaussianSize", detector.m_gaussianKernelSize},
Expand Down
8 changes: 4 additions & 4 deletions modules/core/include/visp3/core/vpImageFilter.h
Original file line number Diff line number Diff line change
Expand Up @@ -156,12 +156,12 @@ class VISP_EXPORT vpImageFilter
CANNY_COUNT_FILTERING = 2 //! Number of supported backends
} vpCannyFilteringAndGradientType;

static std::string vpCannyFilteringAndGradientTypeList(const std::string &pref = "<", const std::string &sep = " , ",
static std::string vpGetCannyFiltAndGradTypes(const std::string &pref = "<", const std::string &sep = " , ",
const std::string &suf = ">");

static std::string vpCannyFilteringAndGradientTypeToString(const vpCannyFilteringAndGradientType &type);
static std::string vpCannyFiltAndGradTypeToStr(const vpCannyFilteringAndGradientType &type);

static vpCannyFilteringAndGradientType vpCannyFilteringAndGradientTypeFromString(const std::string &name);
static vpCannyFilteringAndGradientType vpCannyFiltAndGradTypeFromStr(const std::string &name);

static void canny(const vpImage<unsigned char> &I, vpImage<unsigned char> &Ic, const unsigned int &gaussianFilterSize,
const float &thresholdCanny, const unsigned int &apertureSobel);
Expand Down Expand Up @@ -305,7 +305,7 @@ class VISP_EXPORT vpImageFilter
}
else {
std::string errMsg = "[vpImageFilter::computePartialDerivatives] Filtering + gradient method \"";
errMsg += vpCannyFilteringAndGradientTypeToString(filteringType);
errMsg += vpCannyFiltAndGradTypeToStr(filteringType);
errMsg += "\" is not implemented yet\n";
throw(vpException(vpException::notImplementedError, errMsg));
}
Expand Down
133 changes: 79 additions & 54 deletions modules/core/src/image/vpCannyEdgeDetection.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -171,7 +171,7 @@ vpCannyEdgeDetection::initGradientFilters()
}
else {
std::string errMsg = "[vpCannyEdgeDetection::initGradientFilters] Error: gradient filtering method \"";
errMsg += vpImageFilter::vpCannyFilteringAndGradientTypeToString(m_filteringAndGradientType);
errMsg += vpImageFilter::vpCannyFiltAndGradTypeToStr(m_filteringAndGradientType);
errMsg += "\" has not been implemented yet\n";
throw vpException(vpException::notImplementedError, errMsg);
}
Expand Down Expand Up @@ -209,7 +209,7 @@ vpCannyEdgeDetection::detect(const vpImage<unsigned char> &I)

// // Step 1 and 2: filter the image and compute the gradient, if not given by the user
if (!m_areGradientAvailable) {
performFilteringAndGradientComputation(I);
computeFilteringAndGradient(I);
}
m_areGradientAvailable = false; // Reset for next call

Expand Down Expand Up @@ -238,7 +238,7 @@ vpCannyEdgeDetection::detect(const vpImage<unsigned char> &I)
}

void
vpCannyEdgeDetection::performFilteringAndGradientComputation(const vpImage<unsigned char> &I)
vpCannyEdgeDetection::computeFilteringAndGradient(const vpImage<unsigned char> &I)
{
if ((m_filteringAndGradientType == vpImageFilter::CANNY_GBLUR_SOBEL_FILTERING)
|| (m_filteringAndGradientType == vpImageFilter::CANNY_GBLUR_SCHARR_FILTERING)) {
Expand All @@ -254,7 +254,7 @@ vpCannyEdgeDetection::performFilteringAndGradientComputation(const vpImage<unsig
}
else {
std::string errmsg("Currently, the filtering operation \"");
errmsg += vpImageFilter::vpCannyFilteringAndGradientTypeToString(m_filteringAndGradientType);
errmsg += vpImageFilter::vpCannyFiltAndGradTypeToStr(m_filteringAndGradientType);
errmsg += "\" is not handled.";
throw(vpException(vpException::notImplementedError, errmsg));
}
Expand All @@ -273,7 +273,7 @@ vpCannyEdgeDetection::performFilteringAndGradientComputation(const vpImage<unsig
* \param[out] dColGradBeta : The offset along the column attached to the beta weight.
*/
void
getInterpolationWeightsAndOffsets(const float &gradientOrientation,
getInterpolWeightsAndOffsets(const float &gradientOrientation,
float &alpha, float &beta,
int &dRowGradAlpha, int &dRowGradBeta,
int &dColGradAlpha, int &dColGradBeta
Expand Down Expand Up @@ -380,43 +380,56 @@ vpCannyEdgeDetection::performEdgeThinning(const float &lowerThreshold)
int nbRows = m_dIx.getRows();
int nbCols = m_dIx.getCols();

bool ignore_current_pixel = false;
bool grad_lower_threshold = false;
for (int row = 0; row < nbRows; ++row) {
for (int col = 0; col < nbCols; ++col) {
// reset the checks
ignore_current_pixel = false;
grad_lower_threshold = false;

if (mp_mask != nullptr) {
if (!(*mp_mask)[row][col]) {
// The mask tells us to ignore the current pixel
continue;
ignore_current_pixel = true;
// continue
}
}
// continue if the mask does not tell us to ignore the current pixel
if (ignore_current_pixel == false) {

// Computing the gradient orientation and magnitude
float grad = getManhattanGradient(m_dIx, m_dIy, row, col);

if (grad < lowerThreshold) {
// The gradient is lower than minimum threshold => ignoring the point
continue;
}
// Computing the gradient orientation and magnitude
float grad = getManhattanGradient(m_dIx, m_dIy, row, col);

// Getting the offset along the horizontal and vertical axes
// depending on the gradient orientation
int dRowAlphaPlus = 0, dRowBetaPlus = 0;
int dColAphaPlus = 0, dColBetaPlus = 0;
float gradientOrientation = getGradientOrientation(m_dIx, m_dIy, row, col);
float alpha = 0.f, beta = 0.f;
getInterpolationWeightsAndOffsets(gradientOrientation, alpha, beta, dRowAlphaPlus, dRowBetaPlus, dColAphaPlus, dColBetaPlus);
int dRowAlphaMinus = -dRowAlphaPlus, dRowBetaMinus = -dRowBetaPlus;
int dColAphaMinus = -dColAphaPlus, dColBetaMinus = -dColBetaPlus;
float gradAlphaPlus = getManhattanGradient(m_dIx, m_dIy, row + dRowAlphaPlus, col + dColAphaPlus);
float gradBetaPlus = getManhattanGradient(m_dIx, m_dIy, row + dRowBetaPlus, col + dColBetaPlus);
float gradAlphaMinus = getManhattanGradient(m_dIx, m_dIy, row + dRowAlphaMinus, col + dColAphaMinus);
float gradBetaMinus = getManhattanGradient(m_dIx, m_dIy, row + dRowBetaMinus, col + dColBetaMinus);
float gradPlus = (alpha * gradAlphaPlus) + (beta * gradBetaPlus);
float gradMinus = (alpha * gradAlphaMinus) + (beta * gradBetaMinus);

if ((grad >= gradPlus) && (grad >= gradMinus)) {
// Keeping the edge point that has the highest gradient
std::pair<unsigned int, unsigned int> bestPixel(row, col);
m_edgeCandidateAndGradient[bestPixel] = grad;
if (grad < lowerThreshold) {
// The gradient is lower than minimum threshold => ignoring the point
grad_lower_threshold = true;
// continue
}
if (grad_lower_threshold == false) {
//
// Getting the offset along the horizontal and vertical axes
// depending on the gradient orientation
int dRowAlphaPlus = 0, dRowBetaPlus = 0;
int dColAphaPlus = 0, dColBetaPlus = 0;
float gradientOrientation = getGradientOrientation(m_dIx, m_dIy, row, col);
float alpha = 0.f, beta = 0.f;
getInterpolWeightsAndOffsets(gradientOrientation, alpha, beta, dRowAlphaPlus, dRowBetaPlus, dColAphaPlus, dColBetaPlus);
int dRowAlphaMinus = -dRowAlphaPlus, dRowBetaMinus = -dRowBetaPlus;
int dColAphaMinus = -dColAphaPlus, dColBetaMinus = -dColBetaPlus;
float gradAlphaPlus = getManhattanGradient(m_dIx, m_dIy, row + dRowAlphaPlus, col + dColAphaPlus);
float gradBetaPlus = getManhattanGradient(m_dIx, m_dIy, row + dRowBetaPlus, col + dColBetaPlus);
float gradAlphaMinus = getManhattanGradient(m_dIx, m_dIy, row + dRowAlphaMinus, col + dColAphaMinus);
float gradBetaMinus = getManhattanGradient(m_dIx, m_dIy, row + dRowBetaMinus, col + dColBetaMinus);
float gradPlus = (alpha * gradAlphaPlus) + (beta * gradBetaPlus);
float gradMinus = (alpha * gradAlphaMinus) + (beta * gradBetaMinus);

if ((grad >= gradPlus) && (grad >= gradMinus)) {
// Keeping the edge point that has the highest gradient
std::pair<unsigned int, unsigned int> bestPixel(row, col);
m_edgeCandidateAndGradient[bestPixel] = grad;
}
}
}
}
}
Expand All @@ -426,7 +439,8 @@ void
vpCannyEdgeDetection::performHysteresisThresholding(const float &lowerThreshold, const float &upperThreshold)
{
std::map<std::pair<unsigned int, unsigned int>, float>::iterator it;
for (it = m_edgeCandidateAndGradient.begin(); it != m_edgeCandidateAndGradient.end(); ++it) {
std::map<std::pair<unsigned int, unsigned int>, float>::iterator m_edgeCandidateAndGradient_end = m_edgeCandidateAndGradient.end();
for (it = m_edgeCandidateAndGradient.begin(); it != m_edgeCandidateAndGradient_end; ++it) {
if (it->second >= upperThreshold) {
m_edgePointsCandidates[it->first] = STRONG_EDGE;
}
Expand All @@ -440,7 +454,8 @@ void
vpCannyEdgeDetection::performEdgeTracking()
{
std::map<std::pair<unsigned int, unsigned int>, EdgeType>::iterator it;
for (it = m_edgePointsCandidates.begin(); it != m_edgePointsCandidates.end(); ++it) {
std::map<std::pair<unsigned int, unsigned int>, EdgeType>::iterator m_edgePointsCandidates_end = m_edgePointsCandidates.end();
for (it = m_edgePointsCandidates.begin(); it != m_edgePointsCandidates_end; ++it) {
if (it->second == STRONG_EDGE) {
m_edgeMap[it->first.first][it->first.second] = 255;
}
Expand All @@ -459,37 +474,47 @@ vpCannyEdgeDetection::recursiveSearchForStrongEdge(const std::pair<unsigned int,
int nbRows = m_dIx.getRows();
int nbCols = m_dIx.getCols();
m_edgePointsCandidates[coordinates] = ON_CHECK;
bool test_row = false;
bool test_col = false;
bool test_drdc = false;
bool edge_in_image_limit = false;
for (int dr = -1; (dr <= 1) && (!hasFoundStrongEdge); ++dr) {
for (int dc = -1; (dc <= 1) && (!hasFoundStrongEdge); ++dc) {
// reset the check for the edge on image limit
edge_in_image_limit = false;

int idRow = dr + static_cast<int>(coordinates.first);
idRow = std::max<int>(idRow, 0); // Avoid getting negative pixel ID
int idCol = dc + static_cast<int>(coordinates.second);
idCol = std::max<int>(idCol, 0); // Avoid getting negative pixel ID

// Checking if we are still looking for an edge in the limit of the image
if (((idRow < 0) || (idRow >= nbRows))
|| ((idCol < 0) || (idCol >= nbCols))
|| ((dr == 0) && (dc == 0))
) {
continue;
test_row = (idRow < 0) || (idRow >= nbRows);
test_col = (idCol < 0) || (idCol >= nbCols);
test_drdc = (dr == 0) && (dc == 0);
if (test_row || test_col || test_drdc) {
edge_in_image_limit = true;
// the continue is replaced by the test
}

try {
std::pair<unsigned int, unsigned int> key_candidate(idRow, idCol);
// Checking if the 8-neighbor point is in the list of edge candidates
EdgeType type_candidate = m_edgePointsCandidates.at(key_candidate);
if (type_candidate == STRONG_EDGE) {
// The 8-neighbor point is a strong edge => the weak edge becomes a strong edge
hasFoundStrongEdge = true;
if (edge_in_image_limit == false) {

try {
std::pair<unsigned int, unsigned int> key_candidate(idRow, idCol);
// Checking if the 8-neighbor point is in the list of edge candidates
EdgeType type_candidate = m_edgePointsCandidates.at(key_candidate);
if (type_candidate == STRONG_EDGE) {
// The 8-neighbor point is a strong edge => the weak edge becomes a strong edge
hasFoundStrongEdge = true;
}
else if (type_candidate == WEAK_EDGE) {
// Checking if the WEAK_EDGE neighbor has a STRONG_EDGE neighbor
hasFoundStrongEdge = recursiveSearchForStrongEdge(key_candidate);
}
}
else if (type_candidate == WEAK_EDGE) {
// Checking if the WEAK_EDGE neighbor has a STRONG_EDGE neighbor
hasFoundStrongEdge = recursiveSearchForStrongEdge(key_candidate);
catch (...) {
// continue - nothing to do
}
}
catch (...) {
continue;
}
}
}
if (hasFoundStrongEdge) {
Expand Down
15 changes: 7 additions & 8 deletions modules/core/src/image/vpGaussianFilter.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -46,14 +46,13 @@ class vpGaussianFilter::Impl
: m_funcPtrGray(nullptr), m_funcPtrRGBa(nullptr), m_deinterleave(deinterleave)
{
const float epsilon = 0.001f;
{
const size_t channels = 1;
m_funcPtrGray = SimdGaussianBlurInit(width, height, channels, &sigma, &epsilon);
}
{
const size_t channels = 4;
m_funcPtrRGBa = SimdGaussianBlurInit(width, height, channels, &sigma, &epsilon);
}

const size_t channels_1 = 1;
m_funcPtrGray = SimdGaussianBlurInit(width, height, channels_1, &sigma, &epsilon);

const size_t channels_4 = 4;
m_funcPtrRGBa = SimdGaussianBlurInit(width, height, channels_4, &sigma, &epsilon);

if (m_deinterleave) {
m_red.resize(height, width);
m_green.resize(height, width);
Expand Down
Loading

0 comments on commit 6591281

Please sign in to comment.