Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

vertexai[minor]: with_structured_output #37

Merged
merged 3 commits into from
Feb 27, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
126 changes: 124 additions & 2 deletions libs/vertexai/langchain_google_vertexai/chat_models.py
Original file line number Diff line number Diff line change
Expand Up @@ -4,7 +4,8 @@
import json
import logging
from dataclasses import dataclass, field
from typing import Any, AsyncIterator, Dict, Iterator, List, Optional, Union, cast
from operator import itemgetter
from typing import Any, AsyncIterator, Dict, Iterator, List, Optional, Type, Union, cast

import proto # type: ignore[import-untyped]
from google.cloud.aiplatform_v1beta1.types.content import Part as GapicPart
Expand All @@ -13,6 +14,7 @@
AsyncCallbackManagerForLLMRun,
CallbackManagerForLLMRun,
)
from langchain_core.language_models import LanguageModelInput
from langchain_core.language_models.chat_models import (
BaseChatModel,
generate_from_stream,
Expand All @@ -25,8 +27,14 @@
HumanMessage,
SystemMessage,
)
from langchain_core.output_parsers.base import OutputParserLike
from langchain_core.output_parsers.openai_functions import (
JsonOutputFunctionsParser,
PydanticOutputFunctionsParser,
)
from langchain_core.outputs import ChatGeneration, ChatGenerationChunk, ChatResult
from langchain_core.pydantic_v1 import root_validator
from langchain_core.pydantic_v1 import BaseModel, root_validator
from langchain_core.runnables import Runnable, RunnablePassthrough
from vertexai.generative_models import ( # type: ignore
Candidate,
Content,
Expand Down Expand Up @@ -581,6 +589,120 @@ async def _astream(
),
)

def with_structured_output(
self,
schema: Union[Dict, Type[BaseModel]],
*,
include_raw: bool = False,
**kwargs: Any,
) -> Runnable[LanguageModelInput, Union[Dict, BaseModel]]:
"""Model wrapper that returns outputs formatted to match the given schema.

Args:
schema: The output schema as a dict or a Pydantic class. If a Pydantic class
then the model output will be an object of that class. If a dict then
the model output will be a dict. With a Pydantic class the returned
attributes will be validated, whereas with a dict they will not be. If
`method` is "function_calling" and `schema` is a dict, then the dict
must match the OpenAI function-calling spec.
include_raw: If False then only the parsed structured output is returned. If
an error occurs during model output parsing it will be raised. If True
then both the raw model response (a BaseMessage) and the parsed model
response will be returned. If an error occurs during output parsing it
will be caught and returned as well. The final output is always a dict
with keys "raw", "parsed", and "parsing_error".

Returns:
A Runnable that takes any ChatModel input. If include_raw is True then a
dict with keys — raw: BaseMessage, parsed: Optional[_DictOrPydantic],
parsing_error: Optional[BaseException]. If include_raw is False then just
_DictOrPydantic is returned, where _DictOrPydantic depends on the schema.
If schema is a Pydantic class then _DictOrPydantic is the Pydantic class.
If schema is a dict then _DictOrPydantic is a dict.

Example: Pydantic schema, exclude raw:
.. code-block:: python

from langchain_core.pydantic_v1 import BaseModel
from langchain_google_vertexai import ChatVertexAI

class AnswerWithJustification(BaseModel):
'''An answer to the user question along with justification for the answer.'''
answer: str
justification: str

llm = ChatVertexAI(model="gemini-pro", temperature=0)
structured_llm = llm.with_structured_output(AnswerWithJustification)

structured_llm.invoke("What weighs more a pound of bricks or a pound of feathers")
# -> AnswerWithJustification(
# answer='They weigh the same.', justification='A pound is a pound.'
# )

Example: Pydantic schema, include raw:
.. code-block:: python

from langchain_core.pydantic_v1 import BaseModel
from langchain_google_vertexai import ChatVertexAI

class AnswerWithJustification(BaseModel):
'''An answer to the user question along with justification for the answer.'''
answer: str
justification: str

llm = ChatVertexAI(model="gemini-pro", temperature=0)
structured_llm = llm.with_structured_output(AnswerWithJustification, include_raw=True)

structured_llm.invoke("What weighs more a pound of bricks or a pound of feathers")
# -> {
# 'raw': AIMessage(content='', additional_kwargs={'tool_calls': [{'id': 'call_Ao02pnFYXD6GN1yzc0uXPsvF', 'function': {'arguments': '{"answer":"They weigh the same.","justification":"Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume or density of the objects may differ."}', 'name': 'AnswerWithJustification'}, 'type': 'function'}]}),
# 'parsed': AnswerWithJustification(answer='They weigh the same.', justification='Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume or density of the objects may differ.'),
# 'parsing_error': None
# }

Example: Dict schema, exclude raw:
.. code-block:: python

from langchain_core.pydantic_v1 import BaseModel
from langchain_core.utils.function_calling import convert_to_openai_tool
from langchain_google_vertexai import ChatVertexAI

class AnswerWithJustification(BaseModel):
'''An answer to the user question along with justification for the answer.'''
answer: str
justification: str

dict_schema = convert_to_openai_tool(AnswerWithJustification)
llm = ChatVertexAI(model="gemini-pro", temperature=0)
structured_llm = llm.with_structured_output(dict_schema)

structured_llm.invoke("What weighs more a pound of bricks or a pound of feathers")
# -> {
# 'answer': 'They weigh the same',
# 'justification': 'Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume and density of the two substances differ.'
# }

""" # noqa: E501
if kwargs:
raise ValueError(f"Received unsupported arguments {kwargs}")
if isinstance(schema, type) and issubclass(schema, BaseModel):
parser: OutputParserLike = PydanticOutputFunctionsParser(
pydantic_schema=schema
)
else:
parser = JsonOutputFunctionsParser()
llm = self.bind(functions=[schema])
if include_raw:
parser_with_fallback = RunnablePassthrough.assign(
parsed=itemgetter("raw") | parser, parsing_error=lambda _: None
).with_fallbacks(
[RunnablePassthrough.assign(parsed=lambda _: None)],
exception_key="parsing_error",
)
return {"raw": llm} | parser_with_fallback
else:
return llm | parser

def _start_chat(
self, history: _ChatHistory, **kwargs: Any
) -> Union[ChatSession, CodeChatSession]:
Expand Down
Loading
Loading