Skip to content

Commit

Permalink
Add LCEL to prompt doc (#11875)
Browse files Browse the repository at this point in the history
  • Loading branch information
baskaryan authored Oct 16, 2023
1 parent 210a48c commit 049a035
Show file tree
Hide file tree
Showing 2 changed files with 386 additions and 133 deletions.
386 changes: 386 additions & 0 deletions docs/docs/modules/model_io/prompts/prompt_templates/index.ipynb
Original file line number Diff line number Diff line change
@@ -0,0 +1,386 @@
{
"cells": [
{
"cell_type": "raw",
"id": "77dd0c90-94d7-4acd-a360-e977b39d0a8f",
"metadata": {},
"source": [
"---\n",
"sidebar_position: 0\n",
"title: Prompt templates\n",
"---"
]
},
{
"cell_type": "markdown",
"id": "2d98412d-fc53-42c1-aed8-f1f8eb9ada58",
"metadata": {},
"source": [
"Prompt templates are pre-defined recipes for generating prompts for language models.\n",
"\n",
"A template may include instructions, few-shot examples, and specific context and\n",
"questions appropriate for a given task.\n",
"\n",
"LangChain provides tooling to create and work with prompt templates.\n",
"\n",
"LangChain strives to create model agnostic templates to make it easy to reuse\n",
"existing templates across different language models.\n",
"\n",
"Typically, language models expect the prompt to either be a string or else a list of chat messages.\n",
"\n",
"## `PromptTemplate`\n",
"\n",
"Use `PromptTemplate` to create a template for a string prompt.\n",
"\n",
"By default, `PromptTemplate` uses [Python's str.format](https://docs.python.org/3/library/stdtypes.html#str.format)\n",
"syntax for templating."
]
},
{
"cell_type": "code",
"execution_count": 17,
"id": "a5bc258b-87d2-486b-9785-edf5b23fd179",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'Tell me a funny joke about chickens.'"
]
},
"execution_count": 17,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from langchain.prompts import PromptTemplate\n",
"\n",
"prompt_template = PromptTemplate.from_template(\n",
" \"Tell me a {adjective} joke about {content}.\"\n",
")\n",
"prompt_template.format(adjective=\"funny\", content=\"chickens\")"
]
},
{
"cell_type": "markdown",
"id": "d54c803c-0f80-412d-9156-b8390e0265c0",
"metadata": {},
"source": [
"The template supports any number of variables, including no variables:n"
]
},
{
"cell_type": "code",
"execution_count": 18,
"id": "63bd7ac3-5cf6-4eb2-8205-d1a01029b56a",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'Tell me a joke'"
]
},
"execution_count": 18,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from langchain.prompts import PromptTemplate\n",
"\n",
"prompt_template = PromptTemplate.from_template(\n",
"\"Tell me a joke\"\n",
")\n",
"prompt_template.format()"
]
},
{
"cell_type": "markdown",
"id": "69f7c948-9f78-431a-a466-8038e6b6f856",
"metadata": {},
"source": [
"For additional validation, specify `input_variables` explicitly. These variables\n",
"will be compared against the variables present in the template string during instantiation, **raising an exception if\n",
"there is a mismatch**. For example:"
]
},
{
"cell_type": "code",
"execution_count": 19,
"id": "617d7b2c-7308-4e74-9cc9-96ee0b7a13ac",
"metadata": {},
"outputs": [
{
"ename": "ValidationError",
"evalue": "1 validation error for PromptTemplate\n__root__\n Invalid prompt schema; check for mismatched or missing input parameters. 'content' (type=value_error)",
"output_type": "error",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mValidationError\u001b[0m Traceback (most recent call last)",
"Cell \u001b[0;32mIn[19], line 3\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mlangchain\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mprompts\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m PromptTemplate\n\u001b[0;32m----> 3\u001b[0m invalid_prompt \u001b[38;5;241m=\u001b[39m \u001b[43mPromptTemplate\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 4\u001b[0m \u001b[43m \u001b[49m\u001b[43minput_variables\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43m[\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43madjective\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m]\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 5\u001b[0m \u001b[43m \u001b[49m\u001b[43mtemplate\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mTell me a \u001b[39;49m\u001b[38;5;132;43;01m{adjective}\u001b[39;49;00m\u001b[38;5;124;43m joke about \u001b[39;49m\u001b[38;5;132;43;01m{content}\u001b[39;49;00m\u001b[38;5;124;43m.\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\n\u001b[1;32m 6\u001b[0m \u001b[43m)\u001b[49m\n",
"File \u001b[0;32m~/langchain/libs/langchain/langchain/load/serializable.py:97\u001b[0m, in \u001b[0;36mSerializable.__init__\u001b[0;34m(self, **kwargs)\u001b[0m\n\u001b[1;32m 96\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21m__init__\u001b[39m(\u001b[38;5;28mself\u001b[39m, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs: Any) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[0;32m---> 97\u001b[0m \u001b[38;5;28;43msuper\u001b[39;49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[38;5;21;43m__init__\u001b[39;49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 98\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_lc_kwargs \u001b[38;5;241m=\u001b[39m kwargs\n",
"File \u001b[0;32m~/langchain/.venv/lib/python3.9/site-packages/pydantic/main.py:341\u001b[0m, in \u001b[0;36mpydantic.main.BaseModel.__init__\u001b[0;34m()\u001b[0m\n",
"\u001b[0;31mValidationError\u001b[0m: 1 validation error for PromptTemplate\n__root__\n Invalid prompt schema; check for mismatched or missing input parameters. 'content' (type=value_error)"
]
}
],
"source": [
"from langchain.prompts import PromptTemplate\n",
"\n",
"invalid_prompt = PromptTemplate(\n",
" input_variables=[\"adjective\"],\n",
" template=\"Tell me a {adjective} joke about {content}.\"\n",
")"
]
},
{
"cell_type": "markdown",
"id": "2715fd80-e294-49ca-9fc2-5a012949ed8a",
"metadata": {},
"source": [
"You can create custom prompt templates that format the prompt in any way you want.\n",
"For more information, see [Custom Prompt Templates](./custom_prompt_template.html).\n",
"\n",
"## `ChatPromptTemplate`\n",
"\n",
"The prompt to [chat models](../models/chat) is a list of chat messages.\n",
"\n",
"Each chat message is associated with content, and an additional parameter called `role`.\n",
"For example, in the OpenAI [Chat Completions API](https://platform.openai.com/docs/guides/chat/introduction), a chat message can be associated with an AI assistant, a human or a system role.\n",
"\n",
"Create a chat prompt template like this:"
]
},
{
"cell_type": "code",
"execution_count": 22,
"id": "d088d53c-0e20-4fb9-9d54-b0e989b998b0",
"metadata": {},
"outputs": [],
"source": [
"from langchain.prompts import ChatPromptTemplate\n",
"\n",
"chat_template = ChatPromptTemplate.from_messages([\n",
" (\"system\", \"You are a helpful AI bot. Your name is {name}.\"),\n",
" (\"human\", \"Hello, how are you doing?\"),\n",
" (\"ai\", \"I'm doing well, thanks!\"),\n",
" (\"human\", \"{user_input}\"),\n",
"])\n",
"\n",
"messages = chat_template.format_messages(\n",
" name=\"Bob\",\n",
" user_input=\"What is your name?\"\n",
")"
]
},
{
"cell_type": "markdown",
"id": "d1e7e3ef-ba7d-4ca5-a95c-a0488c9679e5",
"metadata": {},
"source": [
"`ChatPromptTemplate.from_messages` accepts a variety of message representations.\n",
"\n",
"For example, in addition to using the 2-tuple representation of (type, content) used\n",
"above, you could pass in an instance of `MessagePromptTemplate` or `BaseMessage`."
]
},
{
"cell_type": "code",
"execution_count": 23,
"id": "f6632eda-582f-4f29-882f-108587f0397c",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"AIMessage(content='I absolutely love indulging in delicious treats!')"
]
},
"execution_count": 23,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from langchain.chat_models import ChatOpenAI\n",
"from langchain.prompts import HumanMessagePromptTemplate\n",
"from langchain.schema.messages import SystemMessage\n",
"\n",
"chat_template = ChatPromptTemplate.from_messages(\n",
" [\n",
" SystemMessage(\n",
" content=(\n",
" \"You are a helpful assistant that re-writes the user's text to \"\n",
" \"sound more upbeat.\"\n",
" )\n",
" ),\n",
" HumanMessagePromptTemplate.from_template(\"{text}\"),\n",
" ]\n",
")\n",
"\n",
"llm = ChatOpenAI()\n",
"llm(chat_template.format_messages(text='i dont like eating tasty things.'))"
]
},
{
"cell_type": "markdown",
"id": "8c4b46da-d51b-4801-955f-ba4bf139162f",
"metadata": {},
"source": [
"This provides you with a lot of flexibility in how you construct your chat prompts."
]
},
{
"cell_type": "markdown",
"id": "3a5fe78c-572c-4e87-b02f-7d33126fb605",
"metadata": {},
"source": [
"## LCEL\n",
"\n",
"`PromptTemplate` and `ChatPromptTemplate` implement the [Runnable interface](/docs/expression_language/interface), the basic building block of the [LangChain Expression Language (LCEL)](/docs/expression_language/). This means they support `invoke`, `ainvoke`, `stream`, `astream`, `batch`, `abatch`, `astream_log` calls.\n",
"\n",
"`PromptTemplate` accepts a dictionary (of the prompt variables) and returns a `StringPromptValue`. A `ChatPromptTemplate` accepts a dictionary and returns a `ChatPromptValue`."
]
},
{
"cell_type": "code",
"execution_count": 24,
"id": "0f0e860b-95e0-4653-8bab-c5d58b0f7d67",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"StringPromptValue(text='Tell me a joke')"
]
},
"execution_count": 24,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"prompt_val = prompt_template.invoke({\"adjective\": \"funny\", \"content\": \"chickens\"})\n",
"prompt_val"
]
},
{
"cell_type": "code",
"execution_count": 25,
"id": "c0dac782-5144-4489-8d77-eba47f1cd1c4",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'Tell me a joke'"
]
},
"execution_count": 25,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"prompt_val.to_string()"
]
},
{
"cell_type": "code",
"execution_count": 26,
"id": "a8e3ac32-f690-4d3d-bcb2-27b7931beab2",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[HumanMessage(content='Tell me a joke')]"
]
},
"execution_count": 26,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"prompt_val.to_messages()"
]
},
{
"cell_type": "code",
"execution_count": 30,
"id": "4516257f-0c3b-4851-9e82-8c9e09111444",
"metadata": {},
"outputs": [],
"source": [
"chat_val = chat_template.invoke({\"text\": 'i dont like eating tasty things.'})"
]
},
{
"cell_type": "code",
"execution_count": 31,
"id": "7adfe927-ba1d-425f-904c-0328e1a10c18",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[SystemMessage(content=\"You are a helpful assistant that re-writes the user's text to sound more upbeat.\"),\n",
" HumanMessage(content='i dont like eating tasty things.')]"
]
},
"execution_count": 31,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"chat_val.to_messages()"
]
},
{
"cell_type": "code",
"execution_count": 32,
"id": "37c9e2e4-a2e8-48a9-a732-01c025a21362",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"\"System: You are a helpful assistant that re-writes the user's text to sound more upbeat.\\nHuman: i dont like eating tasty things.\""
]
},
"execution_count": 32,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"chat_val.to_string()"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "poetry-venv",
"language": "python",
"name": "poetry-venv"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.1"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
Loading

0 comments on commit 049a035

Please sign in to comment.