Skip to content

Commit

Permalink
Community: LlamaCppEmbeddings embed_documents and embed_query (#2…
Browse files Browse the repository at this point in the history
…8827)

- **Description:** `embed_documents` and `embed_query` was throwing off
the error as stated in the issue. The issue was that `Llama` client is
returning the embeddings in a nested list which is not being accounted
for in the current implementation and therefore the stated error is
being raised.
- **Issue:** #28813

---------

Co-authored-by: Chester Curme <[email protected]>
  • Loading branch information
keenborder786 and ccurme authored Dec 23, 2024
1 parent 32917a0 commit 41b6a86
Show file tree
Hide file tree
Showing 2 changed files with 72 additions and 18 deletions.
50 changes: 32 additions & 18 deletions libs/community/langchain_community/embeddings/llamacpp.py
Original file line number Diff line number Diff line change
Expand Up @@ -20,7 +20,7 @@ class LlamaCppEmbeddings(BaseModel, Embeddings):
"""

client: Any = None #: :meta private:
model_path: str
model_path: str = Field(default="")

n_ctx: int = Field(512, alias="n_ctx")
"""Token context window."""
Expand Down Expand Up @@ -88,21 +88,22 @@ def validate_environment(self) -> Self:
if self.n_gpu_layers is not None:
model_params["n_gpu_layers"] = self.n_gpu_layers

try:
from llama_cpp import Llama

self.client = Llama(model_path, embedding=True, **model_params)
except ImportError:
raise ImportError(
"Could not import llama-cpp-python library. "
"Please install the llama-cpp-python library to "
"use this embedding model: pip install llama-cpp-python"
)
except Exception as e:
raise ValueError(
f"Could not load Llama model from path: {model_path}. "
f"Received error {e}"
)
if not self.client:
try:
from llama_cpp import Llama

self.client = Llama(model_path, embedding=True, **model_params)
except ImportError:
raise ImportError(
"Could not import llama-cpp-python library. "
"Please install the llama-cpp-python library to "
"use this embedding model: pip install llama-cpp-python"
)
except Exception as e:
raise ValueError(
f"Could not load Llama model from path: {model_path}. "
f"Received error {e}"
)

return self

Expand All @@ -116,7 +117,17 @@ def embed_documents(self, texts: List[str]) -> List[List[float]]:
List of embeddings, one for each text.
"""
embeddings = self.client.create_embedding(texts)
return [list(map(float, e["embedding"])) for e in embeddings["data"]]
final_embeddings = []
for e in embeddings["data"]:
try:
if isinstance(e["embedding"][0], list):
for data in e["embedding"]:
final_embeddings.append(list(map(float, data)))
else:
final_embeddings.append(list(map(float, e["embedding"])))
except (IndexError, TypeError):
final_embeddings.append(list(map(float, e["embedding"])))
return final_embeddings

def embed_query(self, text: str) -> List[float]:
"""Embed a query using the Llama model.
Expand All @@ -128,4 +139,7 @@ def embed_query(self, text: str) -> List[float]:
Embeddings for the text.
"""
embedding = self.client.embed(text)
return list(map(float, embedding))
if not isinstance(embedding, list):
return list(map(float, embedding))
else:
return list(map(float, embedding[0]))
40 changes: 40 additions & 0 deletions libs/community/tests/unit_tests/embeddings/test_llamacpp.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,40 @@
from typing import Generator
from unittest.mock import MagicMock, patch

import pytest

from langchain_community.embeddings.llamacpp import LlamaCppEmbeddings


@pytest.fixture
def mock_llama_client() -> Generator[MagicMock, None, None]:
with patch(
"langchain_community.embeddings.llamacpp.LlamaCppEmbeddings"
) as MockLlama:
mock_client = MagicMock()
MockLlama.return_value = mock_client
yield mock_client


def test_initialization(mock_llama_client: MagicMock) -> None:
embeddings = LlamaCppEmbeddings(client=mock_llama_client) # type: ignore[call-arg]
assert embeddings.client is not None


def test_embed_documents(mock_llama_client: MagicMock) -> None:
mock_llama_client.create_embedding.return_value = {
"data": [{"embedding": [[0.1, 0.2, 0.3]]}, {"embedding": [[0.4, 0.5, 0.6]]}]
}
embeddings = LlamaCppEmbeddings(client=mock_llama_client) # type: ignore[call-arg]
texts = ["Hello world", "Test document"]
result = embeddings.embed_documents(texts)
expected = [[0.1, 0.2, 0.3], [0.4, 0.5, 0.6]]
assert result == expected


def test_embed_query(mock_llama_client: MagicMock) -> None:
mock_llama_client.embed.return_value = [[0.1, 0.2, 0.3]]
embeddings = LlamaCppEmbeddings(client=mock_llama_client) # type: ignore[call-arg]
result = embeddings.embed_query("Sample query")
expected = [0.1, 0.2, 0.3]
assert result == expected

0 comments on commit 41b6a86

Please sign in to comment.