Skip to content

Commit

Permalink
docs: Integrations NVIDIA llm documentation (#26934)
Browse files Browse the repository at this point in the history
**Description:**

Add Notebook for NVIDIA prompt completion llm class.

cc: @sumitkbh @mattf @dglogo

---------

Co-authored-by: Erick Friis <[email protected]>
  • Loading branch information
raspawar and efriis authored Oct 3, 2024
1 parent ab4dab9 commit 47142eb
Showing 1 changed file with 309 additions and 0 deletions.
309 changes: 309 additions & 0 deletions docs/docs/integrations/llms/nvidia_ai_endpoints.ipynb
Original file line number Diff line number Diff line change
@@ -0,0 +1,309 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# NVIDIA\n",
"\n",
"This will help you getting started with NVIDIA [models](/docs/concepts/#llms). For detailed documentation of all `NVIDIA` features and configurations head to the [API reference](https://python.langchain.com/api_reference/nvidia_ai_endpoints/llms/langchain_nvidia_ai_endpoints.chat_models.NVIDIA.html).\n",
"\n",
"## Overview\n",
"The `langchain-nvidia-ai-endpoints` package contains LangChain integrations building applications with models on \n",
"NVIDIA NIM inference microservice. These models are optimized by NVIDIA to deliver the best performance on NVIDIA \n",
"accelerated infrastructure and deployed as a NIM, an easy-to-use, prebuilt containers that deploy anywhere using a single \n",
"command on NVIDIA accelerated infrastructure.\n",
"\n",
"NVIDIA hosted deployments of NIMs are available to test on the [NVIDIA API catalog](https://build.nvidia.com/). After testing, \n",
"NIMs can be exported from NVIDIA’s API catalog using the NVIDIA AI Enterprise license and run on-premises or in the cloud, \n",
"giving enterprises ownership and full control of their IP and AI application.\n",
"\n",
"NIMs are packaged as container images on a per model basis and are distributed as NGC container images through the NVIDIA NGC Catalog. \n",
"At their core, NIMs provide easy, consistent, and familiar APIs for running inference on an AI model.\n",
"\n",
"This example goes over how to use LangChain to interact with NVIDIA supported via the `NVIDIA` class.\n",
"\n",
"For more information on accessing the llm models through this api, check out the [NVIDIA](https://python.langchain.com/docs/integrations/llms/nvidia_ai_endpoints/) documentation.\n",
"\n",
"### Integration details\n",
"\n",
"| Class | Package | Local | Serializable | JS support | Package downloads | Package latest |\n",
"| :--- | :--- | :---: | :---: | :---: | :---: | :---: |\n",
"| [NVIDIA](https://python.langchain.com/api_reference/nvidia_ai_endpoints/llms/langchain_nvidia_ai_endpoints.chat_models.ChatNVIDIA.html) | [langchain_nvidia_ai_endpoints](https://python.langchain.com/api_reference/nvidia_ai_endpoints/index.html) | ✅ | beta | ❌ | ![PyPI - Downloads](https://img.shields.io/pypi/dm/langchain_nvidia_ai_endpoints?style=flat-square&label=%20) | ![PyPI - Version](https://img.shields.io/pypi/v/langchain_nvidia_ai_endpoints?style=flat-square&label=%20) |\n",
"\n",
"### Model features\n",
"| JSON mode | [Image input](/docs/how_to/multimodal_inputs/) | Audio input | Video input | [Token-level streaming](/docs/how_to/chat_streaming/) | Native async | [Token usage](/docs/how_to/chat_token_usage_tracking/) | [Logprobs](/docs/how_to/logprobs/) |\n",
"| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |\n",
"| ❌ | ✅ | ❌ | ❌ | ✅ | ❌ | ❌ | ❌ | \n",
"\n",
"## Setup\n",
"\n",
"**To get started:**\n",
"\n",
"1. Create a free account with [NVIDIA](https://build.nvidia.com/), which hosts NVIDIA AI Foundation models.\n",
"\n",
"2. Click on your model of choice.\n",
"\n",
"3. Under `Input` select the `Python` tab, and click `Get API Key`. Then click `Generate Key`.\n",
"\n",
"4. Copy and save the generated key as `NVIDIA_API_KEY`. From there, you should have access to the endpoints.\n",
"\n",
"### Credentials\n"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"import getpass\n",
"import os\n",
"\n",
"if not os.getenv(\"NVIDIA_API_KEY\"):\n",
" # Note: the API key should start with \"nvapi-\"\n",
" os.environ[\"NVIDIA_API_KEY\"] = getpass.getpass(\"Enter your NVIDIA API key: \")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Installation\n",
"\n",
"The LangChain NVIDIA AI Endpoints integration lives in the `langchain_nvidia_ai_endpoints` package:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"%pip install --upgrade --quiet langchain-nvidia-ai-endpoints"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Instantiation\n",
"\n",
"See [LLM](/docs/how_to#llms) for full functionality."
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"from langchain_nvidia_ai_endpoints import NVIDIA"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"llm = NVIDIA().bind(max_tokens=256)\n",
"llm"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Invocation"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [],
"source": [
"prompt = \"# Function that does quicksort written in Rust without comments:\""
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"print(llm.invoke(prompt))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Stream, Batch, and Async\n",
"\n",
"These models natively support streaming, and as is the case with all LangChain LLMs they expose a batch method to handle concurrent requests, as well as async methods for invoke, stream, and batch. Below are a few examples."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"for chunk in llm.stream(prompt):\n",
" print(chunk, end=\"\", flush=True)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"llm.batch([prompt])"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"await llm.ainvoke(prompt)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"async for chunk in llm.astream(prompt):\n",
" print(chunk, end=\"\", flush=True)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"await llm.abatch([prompt])"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"async for chunk in llm.astream_log(prompt):\n",
" print(chunk)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"response = llm.invoke(\n",
" \"X_train, y_train, X_test, y_test = train_test_split(X, y, test_size=0.1) #Train a logistic regression model, predict the labels on the test set and compute the accuracy score\"\n",
")\n",
"print(response)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Supported models\n",
"\n",
"Querying `available_models` will still give you all of the other models offered by your API credentials."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"NVIDIA.get_available_models()\n",
"# llm.get_available_models()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Chaining\n",
"\n",
"We can [chain](/docs/how_to/sequence/) our model with a prompt template like so:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from langchain_core.prompts import ChatPromptTemplate\n",
"\n",
"prompt = ChatPromptTemplate(\n",
" [\n",
" (\n",
" \"system\",\n",
" \"You are a helpful assistant that translates {input_language} to {output_language}.\",\n",
" ),\n",
" (\"human\", \"{input}\"),\n",
" ]\n",
")\n",
"\n",
"chain = prompt | llm\n",
"chain.invoke(\n",
" {\n",
" \"input_language\": \"English\",\n",
" \"output_language\": \"German\",\n",
" \"input\": \"I love programming.\",\n",
" }\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## API reference\n",
"\n",
"For detailed documentation of all `NVIDIA` features and configurations head to the API reference: https://python.langchain.com/api_reference/nvidia_ai_endpoints/llms/langchain_nvidia_ai_endpoints.llms.NVIDIA.html"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "langchain-nvidia-ai-endpoints-m0-Y4aGr-py3.10",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.12"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

0 comments on commit 47142eb

Please sign in to comment.