Skip to content

Commit

Permalink
community[patch]: LanceDB integration improvements/fixes (#16173)
Browse files Browse the repository at this point in the history
Hi, I'm from the LanceDB team.

Improves LanceDB integration by making it easier to use - now you aren't
required to create tables manually and pass them in the constructor,
although that is still backward compatible.

Bug fix - pandas was being used even though it's not a dependency for
LanceDB or langchain

PS - this issue was raised a few months ago but lost traction. It is a
feature improvement for our users kindly review this , Thanks !
  • Loading branch information
raghavdixit99 authored Feb 19, 2024
1 parent e92e961 commit 6c18f73
Show file tree
Hide file tree
Showing 4 changed files with 225 additions and 73 deletions.
178 changes: 138 additions & 40 deletions docs/docs/integrations/vectorstores/lancedb.ipynb

Large diffs are not rendered by default.

2 changes: 1 addition & 1 deletion docs/docs/modules/data_connection/vectorstores/index.mdx
Original file line number Diff line number Diff line change
Expand Up @@ -131,7 +131,7 @@ table = db.create_table(
raw_documents = TextLoader('../../../state_of_the_union.txt').load()
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
documents = text_splitter.split_documents(raw_documents)
db = LanceDB.from_documents(documents, OpenAIEmbeddings(), connection=table)
db = LanceDB.from_documents(documents, OpenAIEmbeddings())
```

</TabItem>
Expand Down
84 changes: 67 additions & 17 deletions libs/community/langchain_community/vectorstores/lancedb.py
Original file line number Diff line number Diff line change
Expand Up @@ -12,6 +12,18 @@ class LanceDB(VectorStore):
"""`LanceDB` vector store.
To use, you should have ``lancedb`` python package installed.
You can install it with ``pip install lancedb``.
Args:
connection: LanceDB connection to use. If not provided, a new connection
will be created.
embedding: Embedding to use for the vectorstore.
vector_key: Key to use for the vector in the database. Defaults to ``vector``.
id_key: Key to use for the id in the database. Defaults to ``id``.
text_key: Key to use for the text in the database. Defaults to ``text``.
table_name: Name of the table to use. Defaults to ``vectorstore``.
Example:
.. code-block:: python
Expand All @@ -25,33 +37,43 @@ class LanceDB(VectorStore):

def __init__(
self,
connection: Any,
embedding: Embeddings,
connection: Optional[Any] = None,
embedding: Optional[Embeddings] = None,
vector_key: Optional[str] = "vector",
id_key: Optional[str] = "id",
text_key: Optional[str] = "text",
table_name: Optional[str] = "vectorstore",
):
"""Initialize with Lance DB connection"""
"""Initialize with Lance DB vectorstore"""
try:
import lancedb
except ImportError:
raise ImportError(
"Could not import lancedb python package. "
"Please install it with `pip install lancedb`."
)
if not isinstance(connection, lancedb.db.LanceTable):
raise ValueError(
"connection should be an instance of lancedb.db.LanceTable, ",
f"got {type(connection)}",
)
self._connection = connection
self.lancedb = lancedb
self._embedding = embedding
self._vector_key = vector_key
self._id_key = id_key
self._text_key = text_key
self._table_name = table_name

if self._embedding is None:
raise ValueError("embedding should be provided")

if connection is not None:
if not isinstance(connection, lancedb.db.LanceTable):
raise ValueError(
"connection should be an instance of lancedb.db.LanceTable, ",
f"got {type(connection)}",
)
self._connection = connection
else:
self._connection = self._init_table()

@property
def embeddings(self) -> Embeddings:
def embeddings(self) -> Optional[Embeddings]:
return self._embedding

def add_texts(
Expand All @@ -74,7 +96,7 @@ def add_texts(
# Embed texts and create documents
docs = []
ids = ids or [str(uuid.uuid4()) for _ in texts]
embeddings = self._embedding.embed_documents(list(texts))
embeddings = self._embedding.embed_documents(list(texts)) # type: ignore
for idx, text in enumerate(texts):
embedding = embeddings[idx]
metadata = metadatas[idx] if metadatas else {}
Expand All @@ -86,7 +108,6 @@ def add_texts(
**metadata,
}
)

self._connection.add(docs)
return ids

Expand All @@ -102,14 +123,23 @@ def similarity_search(
Returns:
List of documents most similar to the query.
"""
embedding = self._embedding.embed_query(query)
docs = self._connection.search(embedding).limit(k).to_df()
embedding = self._embedding.embed_query(query) # type: ignore
docs = (
self._connection.search(embedding, vector_column_name=self._vector_key)
.limit(k)
.to_arrow()
)
columns = docs.schema.names
return [
Document(
page_content=row[self._text_key],
metadata=row[docs.columns != self._text_key],
page_content=docs[self._text_key][idx].as_py(),
metadata={
col: docs[col][idx].as_py()
for col in columns
if col != self._text_key
},
)
for _, row in docs.iterrows()
for idx in range(len(docs))
]

@classmethod
Expand All @@ -134,3 +164,23 @@ def from_texts(
instance.add_texts(texts, metadatas=metadatas, **kwargs)

return instance

def _init_table(self) -> Any:
import pyarrow as pa

schema = pa.schema(
[
pa.field(
self._vector_key,
pa.list_(
pa.float32(),
len(self.embeddings.embed_query("test")), # type: ignore
),
),
pa.field(self._id_key, pa.string()),
pa.field(self._text_key, pa.string()),
]
)
db = self.lancedb.connect("/tmp/lancedb")
tbl = db.create_table(self._table_name, schema=schema, mode="overwrite")
return tbl
34 changes: 19 additions & 15 deletions libs/community/tests/integration_tests/vectorstores/test_lancedb.py
Original file line number Diff line number Diff line change
@@ -1,8 +1,11 @@
import pytest

from langchain_community.vectorstores import LanceDB
from tests.integration_tests.vectorstores.fake_embeddings import FakeEmbeddings


def test_lancedb() -> None:
@pytest.mark.requires("lancedb")
def test_lancedb_with_connection() -> None:
import lancedb

embeddings = FakeEmbeddings()
Expand All @@ -23,22 +26,23 @@ def test_lancedb() -> None:
assert "text 1" in result_texts


def test_lancedb_add_texts() -> None:
import lancedb
@pytest.mark.requires("lancedb")
def test_lancedb_without_connection() -> None:
embeddings = FakeEmbeddings()
texts = ["text 1", "text 2", "item 3"]

store = LanceDB(embedding=embeddings)
store.add_texts(texts)
result = store.similarity_search("text 1")
result_texts = [doc.page_content for doc in result]
assert "text 1" in result_texts


@pytest.mark.requires("lancedb")
def test_lancedb_add_texts() -> None:
embeddings = FakeEmbeddings()
db = lancedb.connect("/tmp/lancedb")
texts = ["text 1"]
vectors = embeddings.embed_documents(texts)
table = db.create_table(
"my_table",
data=[
{"vector": vectors[idx], "id": text, "text": text}
for idx, text in enumerate(texts)
],
mode="overwrite",
)
store = LanceDB(table, embeddings)

store = LanceDB(embedding=embeddings)
store.add_texts(["text 2"])
result = store.similarity_search("text 2")
result_texts = [doc.page_content for doc in result]
Expand Down

0 comments on commit 6c18f73

Please sign in to comment.