Skip to content

Commit

Permalink
ChatOpenAI and AzureChatOpenAI openai>=1 compatible (#12948)
Browse files Browse the repository at this point in the history
  • Loading branch information
baskaryan authored Nov 6, 2023
1 parent 52d0055 commit 8e0cb2e
Show file tree
Hide file tree
Showing 4 changed files with 114 additions and 49 deletions.
71 changes: 46 additions & 25 deletions libs/langchain/langchain/chat_models/azure_openai.py
Original file line number Diff line number Diff line change
Expand Up @@ -2,10 +2,10 @@
from __future__ import annotations

import logging
from typing import Any, Dict, Mapping
from typing import Any, Dict, Union

from langchain.chat_models.openai import ChatOpenAI
from langchain.pydantic_v1 import root_validator
from langchain.chat_models.openai import ChatOpenAI, _is_openai_v1
from langchain.pydantic_v1 import BaseModel, Field, root_validator
from langchain.schema import ChatResult
from langchain.utils import get_from_dict_or_env

Expand Down Expand Up @@ -51,13 +51,13 @@ class AzureChatOpenAI(ChatOpenAI):
in, even if not explicitly saved on this class.
"""

deployment_name: str = ""
deployment_name: str = Field(default="", alias="azure_deployment")
model_version: str = ""
openai_api_type: str = ""
openai_api_base: str = ""
openai_api_version: str = ""
openai_api_key: str = ""
openai_organization: str = ""
openai_api_base: str = Field(default="", alias="azure_endpoint")
openai_api_version: str = Field(default="", alias="api_version")
openai_api_key: str = Field(default="", alias="api_key")
openai_organization: str = Field(default="", alias="organization")
openai_proxy: str = ""

@root_validator()
Expand Down Expand Up @@ -101,14 +101,27 @@ def validate_environment(cls, values: Dict) -> Dict:
"Could not import openai python package. "
"Please install it with `pip install openai`."
)
try:
if _is_openai_v1():
values["client"] = openai.AzureOpenAI(
azure_endpoint=values["openai_api_base"],
api_key=values["openai_api_key"],
timeout=values["request_timeout"],
max_retries=values["max_retries"],
organization=values["openai_organization"],
api_version=values["openai_api_version"],
azure_deployment=values["deployment_name"],
).chat.completions
values["async_client"] = openai.AsyncAzureOpenAI(
azure_endpoint=values["openai_api_base"],
api_key=values["openai_api_key"],
timeout=values["request_timeout"],
max_retries=values["max_retries"],
organization=values["openai_organization"],
api_version=values["openai_api_version"],
azure_deployment=values["deployment_name"],
).chat.completions
else:
values["client"] = openai.ChatCompletion
except AttributeError:
raise ValueError(
"`openai` has no `ChatCompletion` attribute, this is likely "
"due to an old version of the openai package. Try upgrading it "
"with `pip install --upgrade openai`."
)
if values["n"] < 1:
raise ValueError("n must be at least 1.")
if values["n"] > 1 and values["streaming"]:
Expand All @@ -118,10 +131,13 @@ def validate_environment(cls, values: Dict) -> Dict:
@property
def _default_params(self) -> Dict[str, Any]:
"""Get the default parameters for calling OpenAI API."""
return {
**super()._default_params,
"engine": self.deployment_name,
}
if _is_openai_v1():
return super()._default_params
else:
return {
**super()._default_params,
"engine": self.deployment_name,
}

@property
def _identifying_params(self) -> Dict[str, Any]:
Expand All @@ -131,11 +147,14 @@ def _identifying_params(self) -> Dict[str, Any]:
@property
def _client_params(self) -> Dict[str, Any]:
"""Get the config params used for the openai client."""
return {
**super()._client_params,
"api_type": self.openai_api_type,
"api_version": self.openai_api_version,
}
if _is_openai_v1():
return super()._client_params
else:
return {
**super()._client_params,
"api_type": self.openai_api_type,
"api_version": self.openai_api_version,
}

@property
def _llm_type(self) -> str:
Expand All @@ -148,7 +167,9 @@ def lc_attributes(self) -> Dict[str, Any]:
"openai_api_version": self.openai_api_version,
}

def _create_chat_result(self, response: Mapping[str, Any]) -> ChatResult:
def _create_chat_result(self, response: Union[dict, BaseModel]) -> ChatResult:
if not isinstance(response, dict):
response = response.dict()
for res in response["choices"]:
if res.get("finish_reason", None) == "content_filter":
raise ValueError(
Expand Down
6 changes: 3 additions & 3 deletions libs/langchain/langchain/chat_models/konko.py
Original file line number Diff line number Diff line change
Expand Up @@ -21,8 +21,8 @@
from langchain.callbacks.manager import (
CallbackManagerForLLMRun,
)
from langchain.chat_models.base import _generate_from_stream
from langchain.chat_models.openai import ChatOpenAI, _convert_delta_to_message_chunk
from langchain.chat_models.base import BaseChatModel, _generate_from_stream
from langchain.chat_models.openai import _convert_delta_to_message_chunk
from langchain.pydantic_v1 import Field, root_validator
from langchain.schema import ChatGeneration, ChatResult
from langchain.schema.messages import AIMessageChunk, BaseMessage
Expand All @@ -35,7 +35,7 @@
logger = logging.getLogger(__name__)


class ChatKonko(ChatOpenAI):
class ChatKonko(BaseChatModel):
"""`ChatKonko` Chat large language models API.
To use, you should have the ``konko`` python package installed, and the
Expand Down
82 changes: 64 additions & 18 deletions libs/langchain/langchain/chat_models/openai.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,6 +3,7 @@

import logging
import sys
from importlib.metadata import version
from typing import (
TYPE_CHECKING,
Any,
Expand All @@ -19,6 +20,8 @@
Union,
)

from packaging.version import Version, parse

from langchain.adapters.openai import convert_dict_to_message, convert_message_to_dict
from langchain.callbacks.manager import (
AsyncCallbackManagerForLLMRun,
Expand All @@ -44,9 +47,13 @@
)
from langchain.schema.output import ChatGenerationChunk
from langchain.schema.runnable import Runnable
from langchain.utils import get_from_dict_or_env, get_pydantic_field_names
from langchain.utils import (
get_from_dict_or_env,
get_pydantic_field_names,
)

if TYPE_CHECKING:
import httpx
import tiktoken


Expand Down Expand Up @@ -91,6 +98,9 @@ async def acompletion_with_retry(
**kwargs: Any,
) -> Any:
"""Use tenacity to retry the async completion call."""
if _is_openai_v1():
return await llm.async_client.create(**kwargs)

retry_decorator = _create_retry_decorator(llm, run_manager=run_manager)

@retry_decorator
Expand All @@ -108,6 +118,11 @@ def _convert_delta_to_message_chunk(
content = _dict.get("content") or ""
if _dict.get("function_call"):
additional_kwargs = {"function_call": dict(_dict["function_call"])}
if (
"name" in additional_kwargs["function_call"]
and additional_kwargs["function_call"]["name"] is None
):
additional_kwargs["function_call"]["name"] = ""
else:
additional_kwargs = {}

Expand All @@ -125,6 +140,11 @@ def _convert_delta_to_message_chunk(
return default_class(content=content)


def _is_openai_v1() -> bool:
_version = parse(version("openai"))
return _version >= Version("1.0.0")


class ChatOpenAI(BaseChatModel):
"""`OpenAI` Chat large language models API.
Expand Down Expand Up @@ -166,6 +186,7 @@ def is_lc_serializable(cls) -> bool:
return True

client: Any = None #: :meta private:
async_client: Any = None #: :meta private:
model_name: str = Field(default="gpt-3.5-turbo", alias="model")
"""Model name to use."""
temperature: float = 0.7
Expand All @@ -175,16 +196,18 @@ def is_lc_serializable(cls) -> bool:
# When updating this to use a SecretStr
# Check for classes that derive from this class (as some of them
# may assume openai_api_key is a str)
openai_api_key: Optional[str] = None
openai_api_key: Optional[str] = Field(default=None, alias="api_key")
"""Base URL path for API requests,
leave blank if not using a proxy or service emulator."""
openai_api_base: Optional[str] = None
openai_organization: Optional[str] = None
openai_api_base: Optional[str] = Field(default=None, alias="base_url")
openai_organization: Optional[str] = Field(default=None, alias="organization")
# to support explicit proxy for OpenAI
openai_proxy: Optional[str] = None
request_timeout: Optional[Union[float, Tuple[float, float]]] = None
request_timeout: Union[float, Tuple[float, float], httpx.Timeout, None] = Field(
default=None, alias="timeout"
)
"""Timeout for requests to OpenAI completion API. Default is 600 seconds."""
max_retries: int = 6
max_retries: int = 2
"""Maximum number of retries to make when generating."""
streaming: bool = False
"""Whether to stream the results or not."""
Expand Down Expand Up @@ -266,14 +289,24 @@ def validate_environment(cls, values: Dict) -> Dict:
"Could not import openai python package. "
"Please install it with `pip install openai`."
)
try:

if _is_openai_v1():
values["client"] = openai.OpenAI(
api_key=values["openai_api_key"],
timeout=values["request_timeout"],
max_retries=values["max_retries"],
organization=values["openai_organization"],
base_url=values["openai_api_base"] or None,
).chat.completions
values["async_client"] = openai.AsyncOpenAI(
api_key=values["openai_api_key"],
timeout=values["request_timeout"],
max_retries=values["max_retries"],
organization=values["openai_organization"],
base_url=values["openai_api_base"] or None,
).chat.completions
else:
values["client"] = openai.ChatCompletion
except AttributeError:
raise ValueError(
"`openai` has no `ChatCompletion` attribute, this is likely "
"due to an old version of the openai package. Try upgrading it "
"with `pip install --upgrade openai`."
)
if values["n"] < 1:
raise ValueError("n must be at least 1.")
if values["n"] > 1 and values["streaming"]:
Expand All @@ -285,7 +318,6 @@ def _default_params(self) -> Dict[str, Any]:
"""Get the default parameters for calling OpenAI API."""
return {
"model": self.model_name,
"request_timeout": self.request_timeout,
"max_tokens": self.max_tokens,
"stream": self.streaming,
"n": self.n,
Expand All @@ -297,6 +329,9 @@ def completion_with_retry(
self, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any
) -> Any:
"""Use tenacity to retry the completion call."""
if _is_openai_v1():
return self.client.create(**kwargs)

retry_decorator = _create_retry_decorator(self, run_manager=run_manager)

@retry_decorator
Expand Down Expand Up @@ -333,6 +368,8 @@ def _stream(
for chunk in self.completion_with_retry(
messages=message_dicts, run_manager=run_manager, **params
):
if not isinstance(chunk, dict):
chunk = chunk.dict()
if len(chunk["choices"]) == 0:
continue
choice = chunk["choices"][0]
Expand Down Expand Up @@ -381,8 +418,10 @@ def _create_message_dicts(
message_dicts = [convert_message_to_dict(m) for m in messages]
return message_dicts, params

def _create_chat_result(self, response: Mapping[str, Any]) -> ChatResult:
def _create_chat_result(self, response: Union[dict, BaseModel]) -> ChatResult:
generations = []
if not isinstance(response, dict):
response = response.dict()
for res in response["choices"]:
message = convert_dict_to_message(res["message"])
gen = ChatGeneration(
Expand All @@ -408,6 +447,8 @@ async def _astream(
async for chunk in await acompletion_with_retry(
self, messages=message_dicts, run_manager=run_manager, **params
):
if not isinstance(chunk, dict):
chunk = chunk.dict()
if len(chunk["choices"]) == 0:
continue
choice = chunk["choices"][0]
Expand Down Expand Up @@ -455,11 +496,16 @@ def _identifying_params(self) -> Dict[str, Any]:
def _client_params(self) -> Dict[str, Any]:
"""Get the parameters used for the openai client."""
openai_creds: Dict[str, Any] = {
"api_key": self.openai_api_key,
"api_base": self.openai_api_base,
"organization": self.openai_organization,
"model": self.model_name,
}
if not _is_openai_v1():
openai_creds.update(
{
"api_key": self.openai_api_key,
"api_base": self.openai_api_base,
"organization": self.openai_organization,
}
)
if self.openai_proxy:
import openai

Expand Down
Original file line number Diff line number Diff line change
@@ -1,6 +1,5 @@
import json
import os
from typing import Any, Mapping, cast
from unittest import mock

import pytest
Expand Down Expand Up @@ -48,9 +47,8 @@ def test_model_name_set_on_chat_result_when_present_in_response(
"""
# convert sample_response_text to instance of Mapping[str, Any]
sample_response = json.loads(sample_response_text)
mock_response = cast(Mapping[str, Any], sample_response)
mock_chat = AzureChatOpenAI()
chat_result = mock_chat._create_chat_result(mock_response)
chat_result = mock_chat._create_chat_result(sample_response)
assert (
chat_result.llm_output is not None
and chat_result.llm_output["model_name"] == model_name
Expand Down

0 comments on commit 8e0cb2e

Please sign in to comment.