-
Notifications
You must be signed in to change notification settings - Fork 15.9k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Initialize GuardrailsOutputParser documentation
- Loading branch information
Showing
1 changed file
with
226 additions
and
0 deletions.
There are no files selected for viewing
226 changes: 226 additions & 0 deletions
226
docs/docs/modules/model_io/output_parsers/guardrails.ipynb
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,226 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"cell_type": "markdown", | ||
"id": "a1ae632a", | ||
"metadata": {}, | ||
"source": [ | ||
"# Guardrails parser\n", | ||
"\n", | ||
"This output parser invokes [Guardrails](https://docs.guardrailsai.com/) to parse the output of a language model, given a schema defined either in XML or as a pydantic model. Guardrails validates strings, or fields in a JSON, using [its predefined validators](https://docs.guardrailsai.com/api_reference/validators/), or a custom validator you define." | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 10, | ||
"outputs": [], | ||
"source": [ | ||
"from guardrails import Guard\n", | ||
"from guardrails.validators import LowerCase, TwoWords, UpperCase\n", | ||
"from langchain.chat_models import ChatOpenAI\n", | ||
"from langchain.output_parsers import GuardrailsOutputParser\n", | ||
"from langchain.prompts import PromptTemplate\n", | ||
"from pydantic import BaseModel, Field" | ||
], | ||
"metadata": { | ||
"collapsed": false, | ||
"ExecuteTime": { | ||
"end_time": "2023-12-13T17:40:28.263352Z", | ||
"start_time": "2023-12-13T17:40:28.258570Z" | ||
} | ||
} | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"source": [ | ||
"## With strings" | ||
], | ||
"metadata": { | ||
"collapsed": false | ||
} | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 11, | ||
"outputs": [ | ||
{ | ||
"data": { | ||
"text/plain": "'colorful comforts'" | ||
}, | ||
"execution_count": 11, | ||
"metadata": {}, | ||
"output_type": "execute_result" | ||
} | ||
], | ||
"source": [ | ||
"guard = Guard.from_string([LowerCase(on_fail=\"fix\")])\n", | ||
"\n", | ||
"guardrails_parser = GuardrailsOutputParser.from_guard(guard)\n", | ||
"\n", | ||
"prompt = PromptTemplate.from_template(\n", | ||
" \"What is a good name for a company that makes {product}?\"\n", | ||
")\n", | ||
"\n", | ||
"runnable = prompt | ChatOpenAI() | guardrails_parser\n", | ||
"\n", | ||
"runnable.invoke({\"product\": \"colorful socks\"})" | ||
], | ||
"metadata": { | ||
"collapsed": false, | ||
"ExecuteTime": { | ||
"end_time": "2023-12-13T17:40:29.345599Z", | ||
"start_time": "2023-12-13T17:40:28.664661Z" | ||
} | ||
} | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"source": [ | ||
"## With pydantic" | ||
], | ||
"metadata": { | ||
"collapsed": false | ||
} | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 20, | ||
"id": "b3f16168", | ||
"metadata": { | ||
"ExecuteTime": { | ||
"end_time": "2023-12-13T17:42:45.201398Z", | ||
"start_time": "2023-12-13T17:42:44.058209Z" | ||
} | ||
}, | ||
"outputs": [ | ||
{ | ||
"data": { | ||
"text/plain": "{'pet_type': 'DOG', 'name': 'Buddy'}" | ||
}, | ||
"execution_count": 20, | ||
"metadata": {}, | ||
"output_type": "execute_result" | ||
} | ||
], | ||
"source": [ | ||
"# Here's an example of a Guard constructed from a pydantic model\n", | ||
"\n", | ||
"\n", | ||
"class Pet(BaseModel):\n", | ||
" pet_type: str = Field(validators=[UpperCase(on_fail=\"fix\")])\n", | ||
" name: str = Field(validators=[TwoWords(on_fail=\"fix\")])\n", | ||
"\n", | ||
"\n", | ||
"prompt = \"\"\"\n", | ||
" What kind of pet should I get and what should I name it?\n", | ||
"\n", | ||
" ${gr.complete_json_suffix_v2}\n", | ||
"\"\"\"\n", | ||
"\n", | ||
"guard = Guard.from_pydantic(Pet, prompt=prompt)\n", | ||
"parser = GuardrailsOutputParser.from_guard(guard)\n", | ||
"\n", | ||
"prompt_template = PromptTemplate(\n", | ||
" template=\"Answer the user query.\\n{format_instructions}\\n{prompt}\\n\",\n", | ||
" input_variables=[\"prompt\"],\n", | ||
" partial_variables={\"format_instructions\": parser.get_format_instructions()},\n", | ||
")\n", | ||
"\n", | ||
"runnable = prompt_template | ChatOpenAI() | parser\n", | ||
"\n", | ||
"runnable.invoke(\n", | ||
" {\n", | ||
" \"product\": \"colorful socks\",\n", | ||
" \"prompt\": prompt,\n", | ||
" }\n", | ||
")" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"id": "fd8c3347-4d0b-459b-ab7b-cf5443297026", | ||
"metadata": { | ||
"collapsed": false | ||
}, | ||
"source": [ | ||
"### With XML" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 19, | ||
"id": "03049f88", | ||
"metadata": { | ||
"ExecuteTime": { | ||
"end_time": "2023-12-13T17:42:35.469586Z", | ||
"start_time": "2023-12-13T17:42:34.578496Z" | ||
} | ||
}, | ||
"outputs": [ | ||
{ | ||
"data": { | ||
"text/plain": "{'pet_type': 'DOG', 'name': 'Buddy'}" | ||
}, | ||
"execution_count": 19, | ||
"metadata": {}, | ||
"output_type": "execute_result" | ||
} | ||
], | ||
"source": [ | ||
"# Here's another example, of a Guard constructed from an XML RAIL schema\n", | ||
"\n", | ||
"rail_spec = \"\"\"\n", | ||
"<rail version=\"0.1\">\n", | ||
"<output>\n", | ||
" <string name=\"pet_type\" validators=\"uppercase\" />\n", | ||
" <string name=\"name\" validators=\"two-words\" />\n", | ||
"</output>\n", | ||
"<prompt>\n", | ||
" What kind of pet should I get and what should I name it?\n", | ||
" ${gr.complete_json_suffix_v2}\n", | ||
"</prompt>\n", | ||
"</rail>\n", | ||
"\"\"\"\n", | ||
"\n", | ||
"guard = Guard.from_rail_string(rail_spec)\n", | ||
"parser = GuardrailsOutputParser.from_guard(guard)\n", | ||
"\n", | ||
"prompt_template = PromptTemplate(\n", | ||
" template=\"Answer the user query.\\n{format_instructions}\\n{prompt}\\n\",\n", | ||
" input_variables=[\"prompt\"],\n", | ||
" partial_variables={\"format_instructions\": parser.get_format_instructions()},\n", | ||
")\n", | ||
"\n", | ||
"runnable = prompt_template | ChatOpenAI() | parser\n", | ||
"\n", | ||
"runnable.invoke(\n", | ||
" {\n", | ||
" \"product\": \"colorful socks\",\n", | ||
" \"prompt\": prompt,\n", | ||
" }\n", | ||
")" | ||
] | ||
} | ||
], | ||
"metadata": { | ||
"kernelspec": { | ||
"display_name": "Python 3 (ipykernel)", | ||
"language": "python", | ||
"name": "python3" | ||
}, | ||
"language_info": { | ||
"codemirror_mode": { | ||
"name": "ipython", | ||
"version": 3 | ||
}, | ||
"file_extension": ".py", | ||
"mimetype": "text/x-python", | ||
"name": "python", | ||
"nbconvert_exporter": "python", | ||
"pygments_lexer": "ipython3", | ||
"version": "3.11.3" | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 5 | ||
} |