Skip to content

Commit

Permalink
Add LangSmith Run Chat Loader (#11458)
Browse files Browse the repository at this point in the history
  • Loading branch information
hinthornw authored Oct 7, 2023
1 parent 484947c commit eb572f4
Show file tree
Hide file tree
Showing 7 changed files with 882 additions and 39 deletions.

Large diffs are not rendered by default.

Original file line number Diff line number Diff line change
@@ -0,0 +1,279 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "a9ab2a39-7c2d-4119-9dc7-8035fdfba3cb",
"metadata": {},
"source": [
"# Fine-Tuning on LangSmith Chat Datasets\n",
"\n",
"This notebook demonstrates an easy way to load a LangSmith chat dataset fine-tune a model on that data.\n",
"The process is simple and comprises 3 steps.\n",
"\n",
"1. Create the chat dataset.\n",
"2. Use the LangSmithDatasetChatLoader to load examples.\n",
"3. Fine-tune your model.\n",
"\n",
"Then you can use the fine-tuned model in your LangChain app.\n",
"\n",
"Before diving in, let's install our prerequisites.\n",
"\n",
"## Prerequisites\n",
"\n",
"Ensure you've installed langchain >= 0.0.311 and have configured your environment with your LangSmith API key."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "ef488003-514a-48b4-93f1-7de4417abf5d",
"metadata": {},
"outputs": [],
"source": [
"%pip install -U langchain openai"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "9fba5c30-9e72-48aa-9535-80f2b3d18ead",
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"import uuid\n",
"uid = uuid.uuid4().hex[:6]\n",
"os.environ[\"LANGCHAIN_TRACING_V2\"] = \"true\"\n",
"os.environ[\"LANGCHAIN_API_KEY\"] = \"YOUR API KEY\""
]
},
{
"cell_type": "markdown",
"id": "8533ab63-d437-492a-aaec-ccca31167bf2",
"metadata": {},
"source": [
"## 1. Select dataset\n",
"\n",
"This notebook fine-tunes a model directly on a selecting which runs to fine-tune on. You will often curate these from traced runs. You can learn more about LangSmith datasets in the docs [docs](https://docs.smith.langchain.com/evaluation/datasets).\n",
"\n",
"For the sake of this tutorial, we will upload an existing dataset here that you can use."
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "462515e0-872a-446e-abbd-6166d73d7414",
"metadata": {},
"outputs": [],
"source": [
"from langsmith.client import Client\n",
"\n",
"client = Client()"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "d384e4ac-5e8f-42a2-8bb5-7d3c9a8a540d",
"metadata": {},
"outputs": [],
"source": [
"import requests\n",
"url = \"https://raw.githubusercontent.com/langchain-ai/langchain/master/docs/docs_skeleton/docs/integrations/chat_loaders/example_data/langsmith_chat_dataset.json\"\n",
"response = requests.get(url)\n",
"response.raise_for_status()\n",
"data = response.json()"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "b0d8ae47-2d3f-4b01-b15f-da58bd750fb4",
"metadata": {},
"outputs": [],
"source": [
"dataset_name = f\"Extraction Fine-tuning Dataset {uid}\"\n",
"ds = client.create_dataset(dataset_name=dataset_name, data_type=\"chat\")"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "87f085b7-71e1-4ff4-a622-e4e1248aa94a",
"metadata": {},
"outputs": [],
"source": [
"_ = client.create_examples(\n",
" inputs = [e['inputs'] for e in data],\n",
" outputs = [e['outputs'] for e in data],\n",
" dataset_id=ds.id,\n",
")"
]
},
{
"cell_type": "markdown",
"id": "f365a359-52f7-47ff-8c36-aadc1070b409",
"metadata": {},
"source": [
"## 2. Prepare Data\n",
"Now we can create an instance of LangSmithRunChatLoader and load the chat sessions using its lazy_load() method."
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "817bc077-c18a-473b-94a4-a7d810d583a8",
"metadata": {},
"outputs": [],
"source": [
"from langchain.chat_loaders.langsmith import LangSmithDatasetChatLoader\n",
"\n",
"loader = LangSmithDatasetChatLoader(dataset_name=dataset_name)\n",
"\n",
"chat_sessions = loader.lazy_load()"
]
},
{
"cell_type": "markdown",
"id": "f21a3bbd-1ed4-481b-9640-206b8bf0d751",
"metadata": {},
"source": [
"#### With the chat sessions loaded, convert them into a format suitable for fine-tuning."
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "9e5ac127-b094-4584-9159-5a6d3d7315c7",
"metadata": {},
"outputs": [],
"source": [
"from langchain.adapters.openai import convert_messages_for_finetuning\n",
"\n",
"training_data = convert_messages_for_finetuning(chat_sessions)"
]
},
{
"cell_type": "markdown",
"id": "188c4978-d85e-4984-a008-a50f6cd6bb84",
"metadata": {},
"source": [
"## 3. Fine-tune the Model\n",
"Now, initiate the fine-tuning process using the OpenAI library."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "11d19e28-be49-4801-8065-1a58d13cd192",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Status=[running]... 302.42s. 143.85s\r"
]
}
],
"source": [
"import openai\n",
"import time\n",
"import json\n",
"from io import BytesIO\n",
"\n",
"my_file = BytesIO()\n",
"for dialog in training_data:\n",
" my_file.write((json.dumps({\"messages\": dialog}) + \"\\n\").encode('utf-8'))\n",
"\n",
"my_file.seek(0)\n",
"training_file = openai.File.create(\n",
" file=my_file,\n",
" purpose='fine-tune'\n",
")\n",
"\n",
"job = openai.FineTuningJob.create(\n",
" training_file=training_file.id,\n",
" model=\"gpt-3.5-turbo\",\n",
")\n",
"\n",
"# Wait for the fine-tuning to complete (this may take some time)\n",
"status = openai.FineTuningJob.retrieve(job.id).status\n",
"start_time = time.time()\n",
"while status != \"succeeded\":\n",
" print(f\"Status=[{status}]... {time.time() - start_time:.2f}s\", end=\"\\r\", flush=True)\n",
" time.sleep(5)\n",
" status = openai.FineTuningJob.retrieve(job.id).status\n",
"\n",
"# Now your model is fine-tuned!"
]
},
{
"cell_type": "markdown",
"id": "54c4cead-500d-41dd-8333-2defde634396",
"metadata": {},
"source": [
"## 4. Use in LangChain\n",
"\n",
"After fine-tuning, use the resulting model ID with the ChatOpenAI model class in your LangChain app."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "3f472ca4-fa9b-485d-bd37-8ce3c59c44db",
"metadata": {},
"outputs": [],
"source": [
"# Get the fine-tuned model ID\n",
"job = openai.FineTuningJob.retrieve(job.id)\n",
"model_id = job.fine_tuned_model\n",
"\n",
"# Use the fine-tuned model in LangChain\n",
"model = ChatOpenAI(\n",
" model=model_id,\n",
" temperature=1,\n",
")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "7d3b5845-6385-42d1-9f7d-5ea798dc2cd9",
"metadata": {},
"outputs": [],
"source": [
"model.invoke(\"There were three ravens sat on a tree.\")"
]
},
{
"cell_type": "markdown",
"id": "5b8c2c79-ce27-4f37-b1b2-5977db8c4e84",
"metadata": {},
"source": [
"Now you have successfully fine-tuned a model using data from LangSmith LLM runs!"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.2"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
Loading

0 comments on commit eb572f4

Please sign in to comment.