-
Notifications
You must be signed in to change notification settings - Fork 2.3k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
4 changed files
with
400 additions
and
51 deletions.
There are no files selected for viewing
398 changes: 398 additions & 0 deletions
398
docs/core_docs/docs/integrations/vectorstores/elasticsearch.ipynb
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,398 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"cell_type": "raw", | ||
"id": "1957f5cb", | ||
"metadata": { | ||
"vscode": { | ||
"languageId": "raw" | ||
} | ||
}, | ||
"source": [ | ||
"---\n", | ||
"sidebar_label: Elasticsearch\n", | ||
"sidebar_class_name: node-only\n", | ||
"---" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"id": "ef1f0986", | ||
"metadata": {}, | ||
"source": [ | ||
"# Elasticsearch\n", | ||
"\n", | ||
"```{=mdx}\n", | ||
"\n", | ||
":::tip Compatibility\n", | ||
"Only available on Node.js.\n", | ||
":::\n", | ||
"\n", | ||
"```\n", | ||
"\n", | ||
"[Elasticsearch](https://github.com/elastic/elasticsearch) is a distributed, RESTful search engine optimized for speed and relevance on production-scale workloads. It supports also vector search using the [k-nearest neighbor](https://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm) (kNN) algorithm and also [custom models for Natural Language Processing](https://www.elastic.co/blog/how-to-deploy-nlp-text-embeddings-and-vector-search) (NLP).\n", | ||
"You can read more about the support of vector search in Elasticsearch [here](https://www.elastic.co/guide/en/elasticsearch/reference/current/knn-search.html).\n", | ||
"\n", | ||
"This guide provides a quick overview for getting started with Elasticsearch [vector stores](/docs/concepts/#vectorstores). For detailed documentation of all `ElasticVectorSearch` features and configurations head to the [API reference](https://api.js.langchain.com/classes/langchain_community_vectorstores_elasticsearch.ElasticVectorSearch.html)." | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"id": "c824838d", | ||
"metadata": {}, | ||
"source": [ | ||
"## Overview\n", | ||
"\n", | ||
"### Integration details\n", | ||
"\n", | ||
"| Class | Package | [PY support](https://python.langchain.com/v0.2/docs/integrations/vectorstores/elasticsearch/) | Package latest |\n", | ||
"| :--- | :--- | :---: | :---: |\n", | ||
"| [`ElasticVectorSearch`](https://api.js.langchain.com/classes/langchain_community_vectorstores_elasticsearch.ElasticVectorSearch.html) | [`@langchain/community`](https://www.npmjs.com/package/@langchain/community) | ✅ | ![NPM - Version](https://img.shields.io/npm/v/@langchain/community?style=flat-square&label=%20&) |" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"id": "36fdc060", | ||
"metadata": {}, | ||
"source": [ | ||
"## Setup\n", | ||
"\n", | ||
"To use Elasticsearch vector stores, you'll need to install the `@langchain/community` integration package.\n", | ||
"\n", | ||
"LangChain.js accepts [`@elastic/elasticsearch`](https://github.com/elastic/elasticsearch-js) as the client for Elasticsearch vectorstore. You'll need to install it as a peer dependency.\n", | ||
"\n", | ||
"This guide will also use [OpenAI embeddings](/docs/integrations/text_embedding/openai), which require you to install the `@langchain/openai` integration package. You can also use [other supported embeddings models](/docs/integrations/text_embedding) if you wish.\n", | ||
"\n", | ||
"```{=mdx}\n", | ||
"import IntegrationInstallTooltip from \"@mdx_components/integration_install_tooltip.mdx\";\n", | ||
"import Npm2Yarn from \"@theme/Npm2Yarn\";\n", | ||
"\n", | ||
"<IntegrationInstallTooltip></IntegrationInstallTooltip>\n", | ||
"\n", | ||
"<Npm2Yarn>\n", | ||
" @langchain/community @elastic/elasticsearch @langchain/openai\n", | ||
"</Npm2Yarn>\n", | ||
"```\n", | ||
"\n", | ||
"### Credentials\n", | ||
"\n", | ||
"To use Elasticsearch vector stores, you'll need to have an Elasticsearch instance running.\n", | ||
"\n", | ||
"You can use the [official Docker image](https://www.elastic.co/guide/en/elasticsearch/reference/current/docker.html) to get started, or you can use [Elastic Cloud](https://www.elastic.co/cloud/), Elastic's official cloud service.\n", | ||
"\n", | ||
"For connecting to Elastic Cloud you can read the documentation reported [here](https://www.elastic.co/guide/en/kibana/current/api-keys.html) for obtaining an API key.\n", | ||
"\n", | ||
"If you are using OpenAI embeddings for this guide, you'll need to set your OpenAI key as well:\n", | ||
"\n", | ||
"```typescript\n", | ||
"process.env.OPENAI_API_KEY = \"YOUR_API_KEY\";\n", | ||
"```\n", | ||
"\n", | ||
"If you want to get automated tracing of your model calls you can also set your [LangSmith](https://docs.smith.langchain.com/) API key by uncommenting below:\n", | ||
"\n", | ||
"```typescript\n", | ||
"// process.env.LANGCHAIN_TRACING_V2=\"true\"\n", | ||
"// process.env.LANGCHAIN_API_KEY=\"your-api-key\"\n", | ||
"```" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"id": "93df377e", | ||
"metadata": {}, | ||
"source": [ | ||
"## Instantiation\n", | ||
"\n", | ||
"Instatiating Elasticsearch will vary depending on where your instance is hosted." | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 1, | ||
"id": "dc37144c-208d-4ab3-9f3a-0407a69fe052", | ||
"metadata": { | ||
"tags": [] | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"import {\n", | ||
" ElasticVectorSearch,\n", | ||
" type ElasticClientArgs,\n", | ||
"} from \"@langchain/community/vectorstores/elasticsearch\";\n", | ||
"import { OpenAIEmbeddings } from \"@langchain/openai\";\n", | ||
"\n", | ||
"import { Client, type ClientOptions } from \"@elastic/elasticsearch\";\n", | ||
"\n", | ||
"import * as fs from \"node:fs\";\n", | ||
"\n", | ||
"const embeddings = new OpenAIEmbeddings({\n", | ||
" model: \"text-embedding-3-small\",\n", | ||
"});\n", | ||
"\n", | ||
"const config: ClientOptions = {\n", | ||
" node: process.env.ELASTIC_URL ?? \"https://127.0.0.1:9200\",\n", | ||
"};\n", | ||
"\n", | ||
"if (process.env.ELASTIC_API_KEY) {\n", | ||
" config.auth = {\n", | ||
" apiKey: process.env.ELASTIC_API_KEY,\n", | ||
" };\n", | ||
"} else if (process.env.ELASTIC_USERNAME && process.env.ELASTIC_PASSWORD) {\n", | ||
" config.auth = {\n", | ||
" username: process.env.ELASTIC_USERNAME,\n", | ||
" password: process.env.ELASTIC_PASSWORD,\n", | ||
" };\n", | ||
"}\n", | ||
"// Local Docker deploys require a TLS certificate\n", | ||
"if (process.env.ELASTIC_CERT_PATH) {\n", | ||
" config.tls = {\n", | ||
" ca: fs.readFileSync(process.env.ELASTIC_CERT_PATH),\n", | ||
" rejectUnauthorized: false,\n", | ||
" }\n", | ||
"}\n", | ||
"const clientArgs: ElasticClientArgs = {\n", | ||
" client: new Client(config),\n", | ||
" indexName: process.env.ELASTIC_INDEX ?? \"test_vectorstore\",\n", | ||
"};\n", | ||
"\n", | ||
"const vectorStore = new ElasticVectorSearch(embeddings, clientArgs);" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"id": "ac6071d4", | ||
"metadata": {}, | ||
"source": [ | ||
"## Manage vector store\n", | ||
"\n", | ||
"### Add items to vector store" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 2, | ||
"id": "17f5efc0", | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"name": "stdout", | ||
"output_type": "stream", | ||
"text": [ | ||
"[ '1', '2', '3', '4' ]\n" | ||
] | ||
} | ||
], | ||
"source": [ | ||
"import type { Document } from \"@langchain/core/documents\";\n", | ||
"\n", | ||
"const document1: Document = {\n", | ||
" pageContent: \"The powerhouse of the cell is the mitochondria\",\n", | ||
" metadata: { source: \"https://example.com\" }\n", | ||
"};\n", | ||
"\n", | ||
"const document2: Document = {\n", | ||
" pageContent: \"Buildings are made out of brick\",\n", | ||
" metadata: { source: \"https://example.com\" }\n", | ||
"};\n", | ||
"\n", | ||
"const document3: Document = {\n", | ||
" pageContent: \"Mitochondria are made out of lipids\",\n", | ||
" metadata: { source: \"https://example.com\" }\n", | ||
"};\n", | ||
"\n", | ||
"const document4: Document = {\n", | ||
" pageContent: \"The 2024 Olympics are in Paris\",\n", | ||
" metadata: { source: \"https://example.com\" }\n", | ||
"}\n", | ||
"\n", | ||
"const documents = [document1, document2, document3, document4];\n", | ||
"\n", | ||
"await vectorStore.addDocuments(documents, { ids: [\"1\", \"2\", \"3\", \"4\"] });" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"id": "dcf1b905", | ||
"metadata": {}, | ||
"source": [ | ||
"### Delete items from vector store\n", | ||
"\n", | ||
"You can delete values from the store by passing the same id you passed in:" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 3, | ||
"id": "ef61e188", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"await vectorStore.delete({ ids: [\"4\"] });" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"id": "c3620501", | ||
"metadata": {}, | ||
"source": [ | ||
"## Query vector store\n", | ||
"\n", | ||
"Once your vector store has been created and the relevant documents have been added you will most likely wish to query it during the running of your chain or agent.\n", | ||
"\n", | ||
"### Query directly\n", | ||
"\n", | ||
"Performing a simple similarity search can be done as follows:" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 13, | ||
"id": "aa0a16fa", | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"name": "stdout", | ||
"output_type": "stream", | ||
"text": [ | ||
"* The powerhouse of the cell is the mitochondria [{\"source\":\"https://example.com\"}]\n", | ||
"* Mitochondria are made out of lipids [{\"source\":\"https://example.com\"}]\n" | ||
] | ||
} | ||
], | ||
"source": [ | ||
"const filter = [{\n", | ||
" operator: \"match\",\n", | ||
" field: \"source\",\n", | ||
" value: \"https://example.com\",\n", | ||
"}];\n", | ||
"\n", | ||
"const similaritySearchResults = await vectorStore.similaritySearch(\"biology\", 2, filter);\n", | ||
"\n", | ||
"for (const doc of similaritySearchResults) {\n", | ||
" console.log(`* ${doc.pageContent} [${JSON.stringify(doc.metadata, null)}]`);\n", | ||
"}" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"id": "3ed9d733", | ||
"metadata": {}, | ||
"source": [ | ||
"The vector store supports [Elasticsearch filter syntax](https://www.elastic.co/guide/en/elasticsearch/reference/current/query-filter-context.html) operators.\n", | ||
"\n", | ||
"If you want to execute a similarity search and receive the corresponding scores you can run:" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 14, | ||
"id": "5efd2eaa", | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"name": "stdout", | ||
"output_type": "stream", | ||
"text": [ | ||
"* [SIM=0.374] The powerhouse of the cell is the mitochondria [{\"source\":\"https://example.com\"}]\n", | ||
"* [SIM=0.370] Mitochondria are made out of lipids [{\"source\":\"https://example.com\"}]\n" | ||
] | ||
} | ||
], | ||
"source": [ | ||
"const similaritySearchWithScoreResults = await vectorStore.similaritySearchWithScore(\"biology\", 2, filter)\n", | ||
"\n", | ||
"for (const [doc, score] of similaritySearchWithScoreResults) {\n", | ||
" console.log(`* [SIM=${score.toFixed(3)}] ${doc.pageContent} [${JSON.stringify(doc.metadata)}]`);\n", | ||
"}" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"id": "0c235cdc", | ||
"metadata": {}, | ||
"source": [ | ||
"### Query by turning into retriever\n", | ||
"\n", | ||
"You can also transform the vector store into a [retriever](/docs/concepts/#retrievers) for easier usage in your chains. " | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 15, | ||
"id": "f3460093", | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"name": "stdout", | ||
"output_type": "stream", | ||
"text": [ | ||
"[\n", | ||
" Document {\n", | ||
" pageContent: 'The powerhouse of the cell is the mitochondria',\n", | ||
" metadata: { source: 'https://example.com' },\n", | ||
" id: undefined\n", | ||
" },\n", | ||
" Document {\n", | ||
" pageContent: 'Mitochondria are made out of lipids',\n", | ||
" metadata: { source: 'https://example.com' },\n", | ||
" id: undefined\n", | ||
" }\n", | ||
"]\n" | ||
] | ||
} | ||
], | ||
"source": [ | ||
"const retriever = vectorStore.asRetriever({\n", | ||
" // Optional filter\n", | ||
" filter: filter,\n", | ||
" k: 2,\n", | ||
"});\n", | ||
"await retriever.invoke(\"biology\");" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"id": "e2e0a211", | ||
"metadata": {}, | ||
"source": [ | ||
"### Usage for retrieval-augmented generation\n", | ||
"\n", | ||
"For guides on how to use this vector store for retrieval-augmented generation (RAG), see the following sections:\n", | ||
"\n", | ||
"- [Tutorials: working with external knowledge](/docs/tutorials/#working-with-external-knowledge).\n", | ||
"- [How-to: Question and answer with RAG](/docs/how_to/#qa-with-rag)\n", | ||
"- [Retrieval conceptual docs](/docs/concepts#retrieval)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"id": "8a27244f", | ||
"metadata": {}, | ||
"source": [ | ||
"## API reference\n", | ||
"\n", | ||
"For detailed documentation of all `ElasticVectorSearch` features and configurations head to the [API reference](https://api.js.langchain.com/classes/langchain_community_vectorstores_elasticsearch.ElasticVectorSearch.html)." | ||
] | ||
} | ||
], | ||
"metadata": { | ||
"kernelspec": { | ||
"display_name": "TypeScript", | ||
"language": "typescript", | ||
"name": "tslab" | ||
}, | ||
"language_info": { | ||
"codemirror_mode": { | ||
"mode": "typescript", | ||
"name": "javascript", | ||
"typescript": true | ||
}, | ||
"file_extension": ".ts", | ||
"mimetype": "text/typescript", | ||
"name": "typescript", | ||
"version": "3.7.2" | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 5 | ||
} |
Oops, something went wrong.