Skip to content

Improve support for pulling structured prompts w/ model info #293

Improve support for pulling structured prompts w/ model info

Improve support for pulling structured prompts w/ model info #293

Triggered via pull request November 13, 2024 18:59
Status Success
Total duration 19m 40s
Artifacts

py-bench.yml

on: pull_request
Fit to window
Zoom out
Zoom in

Annotations

1 warning and 2 notices
benchmark
The following actions use a deprecated Node.js version and will be forced to run on node20: actions/cache@v3. For more info: https://github.blog/changelog/2024-03-07-github-actions-all-actions-will-run-on-node20-instead-of-node16-by-default/
Benchmark results: python/langsmith/client.py#L1
......................................... create_5_000_run_trees: Mean +- std dev: 604 ms +- 43 ms ......................................... create_10_000_run_trees: Mean +- std dev: 1.13 sec +- 0.05 sec ......................................... create_20_000_run_trees: Mean +- std dev: 1.12 sec +- 0.05 sec ......................................... dumps_class_nested_py_branch_and_leaf_200x400: Mean +- std dev: 652 us +- 10 us ......................................... dumps_class_nested_py_leaf_50x100: Mean +- std dev: 23.1 ms +- 0.3 ms ......................................... dumps_class_nested_py_leaf_100x200: Mean +- std dev: 93.8 ms +- 1.0 ms ......................................... dumps_dataclass_nested_50x100: Mean +- std dev: 23.5 ms +- 0.2 ms ......................................... WARNING: the benchmark result may be unstable * the standard deviation (6.02 ms) is 10% of the mean (59.8 ms) Try to rerun the benchmark with more runs, values and/or loops. Run 'python -m pyperf system tune' command to reduce the system jitter. Use pyperf stats, pyperf dump and pyperf hist to analyze results. Use --quiet option to hide these warnings. dumps_pydantic_nested_50x100: Mean +- std dev: 59.8 ms +- 6.0 ms ......................................... WARNING: the benchmark result may be unstable * the standard deviation (27.0 ms) is 14% of the mean (198 ms) Try to rerun the benchmark with more runs, values and/or loops. Run 'python -m pyperf system tune' command to reduce the system jitter. Use pyperf stats, pyperf dump and pyperf hist to analyze results. Use --quiet option to hide these warnings. dumps_pydanticv1_nested_50x100: Mean +- std dev: 198 ms +- 27 ms
Comparison against main: python/langsmith/client.py#L1
+-----------------------------------------------+----------+------------------------+ | Benchmark | main | changes | +===============================================+==========+========================+ | dumps_class_nested_py_leaf_100x200 | 104 ms | 93.8 ms: 1.11x faster | +-----------------------------------------------+----------+------------------------+ | dumps_pydantic_nested_50x100 | 66.4 ms | 59.8 ms: 1.11x faster | +-----------------------------------------------+----------+------------------------+ | dumps_pydanticv1_nested_50x100 | 219 ms | 198 ms: 1.10x faster | +-----------------------------------------------+----------+------------------------+ | dumps_class_nested_py_leaf_50x100 | 25.1 ms | 23.1 ms: 1.09x faster | +-----------------------------------------------+----------+------------------------+ | dumps_dataclass_nested_50x100 | 25.4 ms | 23.5 ms: 1.08x faster | +-----------------------------------------------+----------+------------------------+ | dumps_class_nested_py_branch_and_leaf_200x400 | 705 us | 652 us: 1.08x faster | +-----------------------------------------------+----------+------------------------+ | create_20_000_run_trees | 1.18 sec | 1.12 sec: 1.05x faster | +-----------------------------------------------+----------+------------------------+ | create_10_000_run_trees | 1.19 sec | 1.13 sec: 1.05x faster | +-----------------------------------------------+----------+------------------------+ | Geometric mean | (ref) | 1.08x faster | +-----------------------------------------------+----------+------------------------+ Benchmark hidden because not significant (1): create_5_000_run_trees