Skip to content

Commit

Permalink
Add OpenAI traceable wrapper for JS (#451)
Browse files Browse the repository at this point in the history
  • Loading branch information
dqbd authored Feb 16, 2024
1 parent 1b40136 commit 79acf47
Show file tree
Hide file tree
Showing 9 changed files with 395 additions and 78 deletions.
12 changes: 4 additions & 8 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -43,17 +43,13 @@ export LANGCHAIN_API_KEY=ls_...
Then start tracing your app!

```javascript
import { traceable } from "langsmith/traceable";
import { OpenAI } from "openai";
import { traceable } from "langsmith/traceable";
import { wrapOpenAI } from "langsmith/wrappers";

const client = new OpenAI();

const createCompletion = traceable(
openai.chat.completions.create.bind(openai.chat.completions),
{ name: "OpenAI Chat Completion", run_type: "llm" }
);
const client = wrapOpenAI(new OpenAI());

await createCompletion({
await client.chat.completions.create({
model: "gpt-3.5-turbo",
messages: [{ content: "Hi there!", role: "user" }],
});
Expand Down
3 changes: 3 additions & 0 deletions js/.gitignore
Original file line number Diff line number Diff line change
Expand Up @@ -46,6 +46,9 @@ Chinook_Sqlite.sql
/schemas.cjs
/schemas.js
/schemas.d.ts
/wrappers.cjs
/wrappers.js
/wrappers.d.ts
/index.cjs
/index.js
/index.d.ts
Expand Down
99 changes: 31 additions & 68 deletions js/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -90,6 +90,7 @@ Langsmith's `traceable` wrapper function makes it easy to trace any function or
### OpenAI SDK

<!-- markdown-link-check-disable -->

The easiest ways to trace calls from the [OpenAI SDK](https://platform.openai.com/docs/api-reference) with LangSmith
is using the `traceable` wrapper function available in LangSmith 0.1.0 and up.

Expand All @@ -105,80 +106,49 @@ Next, you will need to install the LangSmith SDK and the OpenAI SDK:
npm install langsmith openai
```

After that, initialize your OpenAI client:
After that, initialize your OpenAI client and wrap the client with `wrapOpenAI` method to enable tracing for Completion and Chat completion API:

```ts
import { OpenAI } from "openai";
import { wrapOpenAI } from "langsmith/wrappers";

const openai = wrapOpenAI(new OpenAI());

const client = new OpenAI();
await openai.chat.completions.create({
model: "gpt-3.5-turbo",
messages: [{ content: "Hi there!", role: "user" }],
});
```

Then, you can wrap the client methods you want to use by passing it to the `traceable` function like this:
Alternatively, you can use the `traceable` function to wrap the client methods you want to use:

```ts
import { traceable } from "langsmith/traceable";

const openai = new OpenAI();

const createCompletion = traceable(
openai.chat.completions.create.bind(openai.chat.completions),
{ name: "OpenAI Chat Completion", run_type: "llm" }
);
```

Note the use of `.bind` to preserve the function's context. The `run_type` field in the extra config object
marks the function as an LLM call, and enables token usage tracking for OpenAI.

This new method takes the same exact arguments and has the same return type as the original method,
but will log everything to LangSmith!

```ts
await createCompletion({
model: "gpt-3.5-turbo",
messages: [{ content: "Hi there!", role: "user" }],
});
```

```
{
id: 'chatcmpl-8sOWEOYVyehDlyPcBiaDtTxWvr9v6',
object: 'chat.completion',
created: 1707974654,
model: 'gpt-3.5-turbo-0613',
choices: [
{
index: 0,
message: { role: 'assistant', content: 'Hello! How can I help you today?' },
logprobs: null,
finish_reason: 'stop'
}
],
usage: { prompt_tokens: 10, completion_tokens: 9, total_tokens: 19 },
system_fingerprint: null
}
```

This also works for streaming:

```ts
const stream = await createCompletion({
model: "gpt-3.5-turbo",
stream: true,
messages: [{ content: "Hi there!", role: "user" }],
});
```

```ts
for await (const chunk of stream) {
console.log(chunk);
}
```
Note the use of `.bind` to preserve the function's context. The `run_type` field in the
extra config object marks the function as an LLM call, and enables token usage tracking
for OpenAI.

Oftentimes, you use the OpenAI client inside of other functions or as part of a longer
sequence. You can automatically get nested traces by using this wrapped method
within other functions wrapped with `traceable`.

```ts
const nestedTrace = traceable(async (text: string) => {
const completion = await createCompletion({
const completion = await openai.chat.completions.create({
model: "gpt-3.5-turbo",
messages: [{ content: text, role: "user" }],
});
Expand Down Expand Up @@ -230,25 +200,22 @@ import { NextRequest, NextResponse } from "next/server";

import { OpenAI } from "openai";
import { traceable } from "langsmith/traceable";
import { wrapOpenAI } from "langsmith/wrappers";

export const runtime = "edge";

const handler = traceable(
async function () {
const openai = new OpenAI();
const createCompletion = traceable(
openai.chat.completions.create.bind(openai.chat.completions),
{ name: "OpenAI Chat Completion", run_type: "llm" }
);
const openai = wrapOpenAI(new OpenAI());

const completion = await createCompletion({
const completion = await openai.chat.completions.create({
model: "gpt-3.5-turbo",
messages: [{ content: "Why is the sky blue?", role: "user" }],
});

const response1 = completion.choices[0].message.content;

const completion2 = await createCompletion({
const completion2 = await openai.chat.completions.create({
model: "gpt-3.5-turbo",
messages: [
{ content: "Why is the sky blue?", role: "user" },
Expand Down Expand Up @@ -287,28 +254,25 @@ The [Vercel AI SDK](https://sdk.vercel.ai/docs) contains integrations with a var
Here's an example of how you can trace outputs in a Next.js handler:

```ts
import { traceable } from 'langsmith/traceable';
import { OpenAIStream, StreamingTextResponse } from 'ai';
import { traceable } from "langsmith/traceable";
import { OpenAIStream, StreamingTextResponse } from "ai";

// Note: There are no types for the Mistral API client yet.
import MistralClient from '@mistralai/mistralai';
import MistralClient from "@mistralai/mistralai";

const client = new MistralClient(process.env.MISTRAL_API_KEY || '');
const client = new MistralClient(process.env.MISTRAL_API_KEY || "");

export async function POST(req: Request) {
// Extract the `messages` from the body of the request
const { messages } = await req.json();

const mistralChatStream = traceable(
client.chatStream.bind(client),
{
name: "Mistral Stream",
run_type: "llm",
}
);
const mistralChatStream = traceable(client.chatStream.bind(client), {
name: "Mistral Stream",
run_type: "llm",
});

const response = await mistralChatStream({
model: 'mistral-tiny',
model: "mistral-tiny",
maxTokens: 1000,
messages,
});
Expand All @@ -324,7 +288,6 @@ export async function POST(req: Request) {

See the [AI SDK docs](https://sdk.vercel.ai/docs) for more examples.


#### Alternatives: **Log traces using a RunTree.**

A RunTree tracks your application. Each RunTree object is required to have a name and run_type. These and other important attributes are as follows:
Expand Down Expand Up @@ -413,7 +376,7 @@ try {
await childChainRun.end({
error: `I errored again ${e.message}`,
});
await childChainRun.patchRun();
await childChainRun.patchRun();
throw e;
}

Expand All @@ -431,7 +394,7 @@ await parentRun.patchRun();

## Evaluation

#### Create a Dataset from Existing Runs
#### Create a Dataset from Existing Runs

Once your runs are stored in LangSmith, you can convert them into a dataset.
For this example, we will do so using the Client, but you can also do this using
Expand Down
11 changes: 10 additions & 1 deletion js/package.json
Original file line number Diff line number Diff line change
Expand Up @@ -20,6 +20,9 @@
"schemas.cjs",
"schemas.js",
"schemas.d.ts",
"wrappers.cjs",
"wrappers.js",
"wrappers.d.ts",
"index.cjs",
"index.js",
"index.d.ts"
Expand Down Expand Up @@ -80,6 +83,7 @@
"eslint-plugin-no-instanceof": "^1.0.1",
"eslint-plugin-prettier": "^4.2.1",
"jest": "^29.5.0",
"openai": "^4.28.0",
"prettier": "^2.8.8",
"ts-jest": "^29.1.0",
"ts-node": "^10.9.1",
Expand Down Expand Up @@ -129,6 +133,11 @@
"import": "./schemas.js",
"require": "./schemas.cjs"
},
"./wrappers": {
"types": "./wrappers.d.ts",
"import": "./wrappers.js",
"require": "./wrappers.cjs"
},
"./package.json": "./package.json"
}
}
}
1 change: 1 addition & 0 deletions js/scripts/create-entrypoints.js
Original file line number Diff line number Diff line change
Expand Up @@ -12,6 +12,7 @@ const entrypoints = {
traceable: "traceable",
evaluation: "evaluation/index",
schemas: "schemas",
wrappers: "wrappers",
};
const updateJsonFile = (relativePath, updateFunction) => {
const contents = fs.readFileSync(relativePath).toString();
Expand Down
128 changes: 128 additions & 0 deletions js/src/tests/wrapped_openai.int.test.ts
Original file line number Diff line number Diff line change
@@ -0,0 +1,128 @@
import { jest } from "@jest/globals";
import { OpenAI } from "openai";
import { wrapOpenAI } from "../wrappers.js";
import { Client } from "../client.js";

test.concurrent("chat.completions", async () => {
const client = new Client();
const callSpy = jest
// eslint-disable-next-line @typescript-eslint/no-explicit-any
.spyOn((client as any).caller, "call")
.mockResolvedValue({ ok: true, text: () => "" });

const originalClient = new OpenAI();
const patchedClient = wrapOpenAI(new OpenAI(), { client });

// invoke
const original = await originalClient.chat.completions.create({
messages: [{ role: "user", content: `Say 'foo'` }],
temperature: 0,
seed: 42,
model: "gpt-3.5-turbo",
});

const patched = await patchedClient.chat.completions.create({
messages: [{ role: "user", content: `Say 'foo'` }],
temperature: 0,
seed: 42,
model: "gpt-3.5-turbo",
});

expect(patched.choices).toEqual(original.choices);

// stream
const originalStream = await originalClient.chat.completions.create({
messages: [{ role: "user", content: `Say 'foo'` }],
temperature: 0,
seed: 42,
model: "gpt-3.5-turbo",
stream: true,
});

const originalChoices = [];
for await (const chunk of originalStream) {
originalChoices.push(chunk.choices);
}

const patchedStream = await patchedClient.chat.completions.create({
messages: [{ role: "user", content: `Say 'foo'` }],
temperature: 0,
seed: 42,
model: "gpt-3.5-turbo",
stream: true,
});

const patchedChoices = [];
for await (const chunk of patchedStream) {
patchedChoices.push(chunk.choices);
}

expect(patchedChoices).toEqual(originalChoices);
for (const call of callSpy.mock.calls) {
// eslint-disable-next-line @typescript-eslint/no-explicit-any
expect((call[2] as any)["method"]).toBe("POST");
}
});

test.concurrent("completions", async () => {
const client = new Client();
const callSpy = jest
// eslint-disable-next-line @typescript-eslint/no-explicit-any
.spyOn((client as any).caller, "call")
.mockResolvedValue({ ok: true, text: () => "" });

const originalClient = new OpenAI();
const patchedClient = wrapOpenAI(new OpenAI(), { client });

const prompt = `Say 'Hi I'm ChatGPT' then stop.`;

// invoke
const original = await originalClient.completions.create({
prompt,
temperature: 0,
seed: 42,
model: "gpt-3.5-turbo-instruct",
});

const patched = await patchedClient.completions.create({
prompt,
temperature: 0,
seed: 42,
model: "gpt-3.5-turbo-instruct",
});

expect(patched.choices).toEqual(original.choices);

// stream
const originalStream = await originalClient.completions.create({
prompt,
temperature: 0,
seed: 42,
model: "gpt-3.5-turbo-instruct",
stream: true,
});

const originalChoices = [];
for await (const chunk of originalStream) {
originalChoices.push(chunk.choices);
}

const patchedStream = await patchedClient.completions.create({
prompt,
temperature: 0,
seed: 42,
model: "gpt-3.5-turbo-instruct",
stream: true,
});

const patchedChoices = [];
for await (const chunk of patchedStream) {
patchedChoices.push(chunk.choices);
}

expect(patchedChoices).toEqual(originalChoices);
for (const call of callSpy.mock.calls) {
// eslint-disable-next-line @typescript-eslint/no-explicit-any
expect((call[2] as any)["method"]).toBe("POST");
}
});
Loading

0 comments on commit 79acf47

Please sign in to comment.