Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Delete examples bulk #1279

Merged
merged 2 commits into from
Jan 8, 2025
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
23 changes: 23 additions & 0 deletions python/langsmith/client.py
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
"""Client for interacting with the LangSmith API.

Check notice on line 1 in python/langsmith/client.py

View workflow job for this annotation

GitHub Actions / benchmark

Benchmark results

........... WARNING: the benchmark result may be unstable * the standard deviation (81.8 ms) is 12% of the mean (700 ms) Try to rerun the benchmark with more runs, values and/or loops. Run 'python -m pyperf system tune' command to reduce the system jitter. Use pyperf stats, pyperf dump and pyperf hist to analyze results. Use --quiet option to hide these warnings. create_5_000_run_trees: Mean +- std dev: 700 ms +- 82 ms ........... WARNING: the benchmark result may be unstable * the standard deviation (152 ms) is 11% of the mean (1.44 sec) Try to rerun the benchmark with more runs, values and/or loops. Run 'python -m pyperf system tune' command to reduce the system jitter. Use pyperf stats, pyperf dump and pyperf hist to analyze results. Use --quiet option to hide these warnings. create_10_000_run_trees: Mean +- std dev: 1.44 sec +- 0.15 sec ........... WARNING: the benchmark result may be unstable * the standard deviation (198 ms) is 14% of the mean (1.41 sec) Try to rerun the benchmark with more runs, values and/or loops. Run 'python -m pyperf system tune' command to reduce the system jitter. Use pyperf stats, pyperf dump and pyperf hist to analyze results. Use --quiet option to hide these warnings. create_20_000_run_trees: Mean +- std dev: 1.41 sec +- 0.20 sec ........... dumps_class_nested_py_branch_and_leaf_200x400: Mean +- std dev: 692 us +- 8 us ........... dumps_class_nested_py_leaf_50x100: Mean +- std dev: 25.3 ms +- 0.2 ms ........... dumps_class_nested_py_leaf_100x200: Mean +- std dev: 104 ms +- 3 ms ........... dumps_dataclass_nested_50x100: Mean +- std dev: 25.8 ms +- 0.9 ms ........... WARNING: the benchmark result may be unstable * the standard deviation (18.0 ms) is 24% of the mean (75.1 ms) Try to rerun the benchmark with more runs, values and/or loops. Run 'python -m pyperf system tune' command to reduce the system jitter. Use pyperf stats, pyperf dump and pyperf hist to analyze results. Use --quiet option to hide these warnings. dumps_pydantic_nested_50x100: Mean +- std dev: 75.1 ms +- 18.0 ms ........... dumps_pydanticv1_nested_50x100: Mean +- std dev: 203 ms +- 2 ms

Check notice on line 1 in python/langsmith/client.py

View workflow job for this annotation

GitHub Actions / benchmark

Comparison against main

+-----------------------------------------------+----------+------------------------+ | Benchmark | main | changes | +===============================================+==========+========================+ | dumps_pydanticv1_nested_50x100 | 218 ms | 203 ms: 1.07x faster | +-----------------------------------------------+----------+------------------------+ | create_5_000_run_trees | 718 ms | 700 ms: 1.03x faster | +-----------------------------------------------+----------+------------------------+ | dumps_class_nested_py_branch_and_leaf_200x400 | 703 us | 692 us: 1.02x faster | +-----------------------------------------------+----------+------------------------+ | dumps_class_nested_py_leaf_100x200 | 104 ms | 104 ms: 1.00x faster | +-----------------------------------------------+----------+------------------------+ | dumps_class_nested_py_leaf_50x100 | 24.9 ms | 25.3 ms: 1.02x slower | +-----------------------------------------------+----------+------------------------+ | dumps_dataclass_nested_50x100 | 25.2 ms | 25.8 ms: 1.02x slower | +-----------------------------------------------+----------+------------------------+ | create_20_000_run_trees | 1.36 sec | 1.41 sec: 1.03x slower | +-----------------------------------------------+----------+------------------------+ | create_10_000_run_trees | 1.39 sec | 1.44 sec: 1.04x slower | +-----------------------------------------------+----------+------------------------+ | dumps_pydantic_nested_50x100 | 66.1 ms | 75.1 ms: 1.14x slower | +-----------------------------------------------+----------+------------------------+ | Geometric mean | (ref) | 1.01x slower | +-----------------------------------------------+----------+------------------------+

Use the client to customize API keys / workspace ocnnections, SSl certs,
etc. for tracing.
Expand Down Expand Up @@ -3983,6 +3983,29 @@
)
ls_utils.raise_for_status_with_text(response)

def delete_examples(self, example_ids: Sequence[ID_TYPE]) -> None:
"""Delete multiple examples by ID.

Parameters
----------
example_ids : Sequence[ID_TYPE]
The IDs of the examples to delete.
"""
response = self.request_with_retries(
"DELETE",
"/examples",
headers={**self._headers, "Content-Type": "application/json"},
data=_dumps_json(
{
"ids": [
str(_as_uuid(id_, f"example_ids[{i}]"))
for i, id_ in enumerate(example_ids)
]
}
),
)
ls_utils.raise_for_status_with_text(response)

def list_dataset_splits(
self,
*,
Expand Down
Loading