-
Notifications
You must be signed in to change notification settings - Fork 4
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
118 additions
and
25 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,45 +1,138 @@ | ||
from fvcore.nn.jit_handles import elementwise_flop_counter | ||
import typing | ||
from collections import Counter, OrderedDict | ||
from numbers import Number | ||
from typing import Any, Callable, List, Optional, Union | ||
|
||
import numpy as np | ||
from fvcore.nn.jit_handles import ( | ||
Handle, | ||
elementwise_flop_counter, | ||
generic_activation_jit, | ||
get_shape, | ||
) | ||
|
||
try: | ||
from math import prod | ||
except ImportError: | ||
from numpy import prod | ||
|
||
|
||
def cosine_similarity_flop_jit(inputs: List[Any], outputs: List[Any]) -> Number: | ||
# inputs is a list of length 2. | ||
input_shapes = [get_shape(v) for v in inputs] | ||
# input_shapes[0]: [batch size, ..., input feature dimension] | ||
# input_shapes[1]: [batch size, ..., output feature dimension] | ||
assert 1 <= max(len(input_shapes), len(input_shapes)) <= 3 | ||
assert input_shapes[0][0] == input_shapes[1][0], input_shapes | ||
assert input_shapes[0][-1] == input_shapes[1][-1], input_shapes | ||
|
||
flops = input_shapes[0][-1] * prod(get_shape(outputs)) | ||
return flops | ||
|
||
|
||
# fmt: off | ||
def scaled_dot_product_attention_flop_jit(inputs: List[Any], outputs: List[Any]) -> Number: | ||
# scaled_dot_product_attention: (((q @ k.transpose(-1, -2)) * q.shape[-1] ** -0.5).softmax(dim=-1) @ v) | ||
# q: bs,nh,l,hd; k: bs,nh,s,hd; v: bs,nh,s,hd | ||
q, k, v = inputs[:3] | ||
q_shape = get_shape(q) | ||
k_shape = get_shape(k) | ||
v_shape = get_shape(v) | ||
assert q_shape[:2] == k_shape[:2] == v_shape[:2], (q_shape, k_shape, v_shape) # bs,nh | ||
assert q_shape[3] == k_shape[-1], (q_shape, k_shape, v_shape) # hd | ||
assert k_shape[2] == v_shape[2], (q_shape, k_shape, v_shape) # s | ||
|
||
bs, nh, l, hdi = q_shape | ||
s = k_shape[2] | ||
hdo = v_shape[-1] | ||
|
||
# q @ k.transpose(-1, -2) | ||
flops = bs * nh * l * hdi * s # bs x nh x l x hd x s | ||
# (q @ k.transpose(-1, -2)) * q.shape[-1] ** -0.5 | ||
flops += bs * nh * l * s | ||
# ((q @ k.transpose(-1, -2)) * q.shape[-1] ** -0.5).softmax(dim=-1) | ||
flops += bs * nh * l * s * 2 # exp and div (sum is ignored) | ||
# ((q @ k.transpose(-1, -2)) * q.shape[-1] ** -0.5).softmax(dim=-1) @ v | ||
flops += bs * nh * l * s * hdo | ||
return flops | ||
# fmt on | ||
|
||
|
||
customized_ops = { | ||
"aten::ones_like": None, | ||
"aten::zeros_like": None, | ||
"aten::to": None, | ||
"aten::view": None, | ||
"aten::view_as": None, | ||
"aten::reshape": None, | ||
"aten::reshape_as": None, | ||
"aten::contiguous": None, | ||
"aten::permute": None, | ||
"aten::permute_": None, | ||
"aten::pad": None, | ||
"aten::fill": None, | ||
"aten::fill_": None, | ||
"aten::repeat": None, | ||
"aten::expand_as": None, | ||
"aten::im2col": None, | ||
"aten::pixel_shuffle": None, | ||
"aten::upsample_bicubic2d": None, | ||
"aten::lift_fresh": None, | ||
"aten::clone": None, | ||
"aten::scaled_dot_product_attention": scaled_dot_product_attention_flop_jit, | ||
# | ||
"aten::cumsum": None, | ||
"aten::clamp_min": None, | ||
# | ||
"aten::lt": None, | ||
"aten::ne": None, | ||
"aten::neg": None, | ||
# | ||
"aten::mul": elementwise_flop_counter(1, 0), | ||
"aten::mul_": elementwise_flop_counter(1, 0), | ||
"aten::add": elementwise_flop_counter(1, 0), | ||
"aten::add_": elementwise_flop_counter(1, 0), | ||
"aten::sub": elementwise_flop_counter(1, 0), | ||
"aten::rsub": elementwise_flop_counter(1, 0), | ||
"aten::sub_": elementwise_flop_counter(1, 0), | ||
"aten::rsub": elementwise_flop_counter(1, 0), | ||
"aten::mul": elementwise_flop_counter(1, 0), | ||
"aten::mul_": elementwise_flop_counter(1, 0), | ||
"aten::div": elementwise_flop_counter(1, 0), | ||
"aten::div_": elementwise_flop_counter(1, 0), | ||
"aten::sum": elementwise_flop_counter(1, 0), | ||
"aten::mean": elementwise_flop_counter(1, 0), | ||
"aten::normal_": elementwise_flop_counter(1, 0), | ||
"aten::norm": elementwise_flop_counter(1, 0), | ||
"aten::cosine_similarity": None, # TODO | ||
"aten::frobenius_norm": elementwise_flop_counter(1, 0), | ||
"aten::cosine_similarity": cosine_similarity_flop_jit, | ||
"aten::min": None, | ||
"aten::max": None, | ||
"aten::topk": None, | ||
"aten::abs": None, | ||
"aten::pow": None, | ||
"aten::im2col": None, | ||
"aten::max_pool2d": None, | ||
"aten::avg_pool2d": None, | ||
"aten::max_pool3d": None, | ||
"aten::avg_pool3d": None, | ||
"aten::pow_": elementwise_flop_counter(1, 0), | ||
"aten::pow": elementwise_flop_counter(1, 0), | ||
"aten::exp_": elementwise_flop_counter(1, 0), | ||
"aten::exp": elementwise_flop_counter(1, 0), | ||
"aten::sqrt": elementwise_flop_counter(1, 0), | ||
"aten::var": elementwise_flop_counter(1, 0), | ||
"aten::std": elementwise_flop_counter(1, 0), | ||
"aten::max_pool2d": elementwise_flop_counter(1, 0), | ||
"aten::avg_pool2d": elementwise_flop_counter(1, 0), | ||
"aten::max_pool3d": elementwise_flop_counter(1, 0), | ||
"aten::avg_pool3d": elementwise_flop_counter(1, 0), | ||
"aten::adaptive_max_pool2d": elementwise_flop_counter(1, 0), | ||
"aten::repeat": None, | ||
"aten::expand_as": None, | ||
"aten::clamp_min": None, | ||
"aten::adaptive_avg_pool2d": elementwise_flop_counter(1, 0), | ||
# activation layer | ||
"aten::sigmoid": None, | ||
"aten::softmax": None, | ||
"aten::log_softmax": None, | ||
"aten::feature_dropout": None, | ||
"aten::gelu": None, | ||
"aten::tanh": None, | ||
"aten::tanh_": None, | ||
"aten::hardtanh": None, | ||
"aten::hardtanh_": None, | ||
"aten::prelu": None, | ||
"aten::leaky_relu_": None, | ||
"aten::sigmoid": generic_activation_jit(op_name="aten::sigmoid"), | ||
"aten::softmax": generic_activation_jit(op_name="aten::softmax"), | ||
"aten::log_softmax": generic_activation_jit(op_name="aten::log_softmax"), | ||
"aten::feature_dropout": generic_activation_jit(op_name="aten::feature_dropout"), | ||
"aten::gelu": generic_activation_jit(op_name="aten::gelu"), | ||
"aten::sin": generic_activation_jit(op_name="aten::sin"), | ||
"aten::cos": generic_activation_jit(op_name="aten::cos"), | ||
"aten::tanh": generic_activation_jit(op_name="aten::tanh"), | ||
"aten::tanh_": generic_activation_jit(op_name="aten::tanh_"), | ||
"aten::hardtanh": generic_activation_jit(op_name="aten::hardtanh"), | ||
"aten::hardtanh_": generic_activation_jit(op_name="aten::hardtanh_"), | ||
"aten::prelu": generic_activation_jit(op_name="aten::prelu"), | ||
"aten::leaky_relu_": generic_activation_jit(op_name="aten::leaky_relu_"), | ||
"aten::silu": generic_activation_jit(op_name="aten::silu"), | ||
} |