-
Notifications
You must be signed in to change notification settings - Fork 1.8k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
move implementations from hpp to cpp
- Loading branch information
Showing
3 changed files
with
392 additions
and
243 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,334 @@ | ||
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */ | ||
|
||
/* | ||
Copyright (C) 2000, 2001, 2002, 2003 RiskMap srl | ||
Copyright (C) 2001, 2002, 2003 Nicolas Di Césaré | ||
Copyright (C) 2004, 2008, 2009, 2011 Ferdinando Ametrano | ||
Copyright (C) 2009 Sylvain Bertrand | ||
Copyright (C) 2013 Peter Caspers | ||
Copyright (C) 2016 Nicholas Bertocchi | ||
This file is part of QuantLib, a free-software/open-source library | ||
for financial quantitative analysts and developers - http://quantlib.org/ | ||
QuantLib is free software: you can redistribute it and/or modify it | ||
under the terms of the QuantLib license. You should have received a | ||
copy of the license along with this program; if not, please email | ||
<[email protected]>. The license is also available online at | ||
<http://quantlib.org/license.shtml>. | ||
This program is distributed in the hope that it will be useful, but WITHOUT | ||
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS | ||
FOR A PARTICULAR PURPOSE. See the license for more details. | ||
*/ | ||
|
||
#include <ql/math/interpolations/cubicinterpolation.hpp> | ||
|
||
namespace QuantLib { | ||
|
||
namespace detail { | ||
|
||
void cubicInterpolationSplineOM1(Array& tmp_, std::vector<Real>& dx_, Array& Y_, Size n_) { | ||
Matrix T_(n_ - 2, n_, 0.0); | ||
for (Size i = 0; i < n_ - 2; ++i) { | ||
T_[i][i] = dx_[i] / 6.0; | ||
T_[i][i + 1] = (dx_[i + 1] + dx_[i]) / 3.0; | ||
T_[i][i + 2] = dx_[i + 1] / 6.0; | ||
} | ||
Matrix S_(n_ - 2, n_, 0.0); | ||
for (Size i = 0; i < n_ - 2; ++i) { | ||
S_[i][i] = 1.0 / dx_[i]; | ||
S_[i][i + 1] = -(1.0 / dx_[i + 1] + 1.0 / dx_[i]); | ||
S_[i][i + 2] = 1.0 / dx_[i + 1]; | ||
} | ||
Matrix Up_(n_, 2, 0.0); | ||
Up_[0][0] = 1; | ||
Up_[n_ - 1][1] = 1; | ||
Matrix Us_(n_, n_ - 2, 0.0); | ||
for (Size i = 0; i < n_ - 2; ++i) | ||
Us_[i + 1][i] = 1; | ||
Matrix Z_ = Us_ * inverse(T_ * Us_); | ||
Matrix I_(n_, n_, 0.0); | ||
for (Size i = 0; i < n_; ++i) | ||
I_[i][i] = 1; | ||
Matrix V_ = (I_ - Z_ * T_) * Up_; | ||
Matrix W_ = Z_ * S_; | ||
Matrix Q_(n_, n_, 0.0); | ||
Q_[0][0] = 1.0 / (n_ - 1) * dx_[0] * dx_[0] * dx_[0]; | ||
Q_[0][1] = 7.0 / 8 * 1.0 / (n_ - 1) * dx_[0] * dx_[0] * dx_[0]; | ||
for (Size i = 1; i < n_ - 1; ++i) { | ||
Q_[i][i - 1] = 7.0 / 8 * 1.0 / (n_ - 1) * dx_[i - 1] * dx_[i - 1] * dx_[i - 1]; | ||
Q_[i][i] = 1.0 / (n_ - 1) * dx_[i] * dx_[i] * dx_[i] + | ||
1.0 / (n_ - 1) * dx_[i - 1] * dx_[i - 1] * dx_[i - 1]; | ||
Q_[i][i + 1] = 7.0 / 8 * 1.0 / (n_ - 1) * dx_[i] * dx_[i] * dx_[i]; | ||
} | ||
Q_[n_ - 1][n_ - 2] = 7.0 / 8 * 1.0 / (n_ - 1) * dx_[n_ - 2] * dx_[n_ - 2] * dx_[n_ - 2]; | ||
Q_[n_ - 1][n_ - 1] = 1.0 / (n_ - 1) * dx_[n_ - 2] * dx_[n_ - 2] * dx_[n_ - 2]; | ||
Matrix J_ = (I_ - V_ * inverse(transpose(V_) * Q_ * V_) * transpose(V_) * Q_) * W_; | ||
Array D_ = J_ * Y_; | ||
for (Size i = 0; i < n_ - 1; ++i) | ||
tmp_[i] = (Y_[i + 1] - Y_[i]) / dx_[i] - (2.0 * D_[i] + D_[i + 1]) * dx_[i] / 6.0; | ||
tmp_[n_ - 1] = tmp_[n_ - 2] + D_[n_ - 2] * dx_[n_ - 2] + | ||
(D_[n_ - 1] - D_[n_ - 2]) * dx_[n_ - 2] / 2.0; | ||
} | ||
|
||
void cubicInterpolationSplineOM2(Array& tmp_, std::vector<Real>& dx_, Array& Y_, Size n_) { | ||
Matrix T_(n_ - 2, n_, 0.0); | ||
for (Size i = 0; i < n_ - 2; ++i) { | ||
T_[i][i] = dx_[i] / 6.0; | ||
T_[i][i + 1] = (dx_[i] + dx_[i + 1]) / 3.0; | ||
T_[i][i + 2] = dx_[i + 1] / 6.0; | ||
} | ||
Matrix S_(n_ - 2, n_, 0.0); | ||
for (Size i = 0; i < n_ - 2; ++i) { | ||
S_[i][i] = 1.0 / dx_[i]; | ||
S_[i][i + 1] = -(1.0 / dx_[i + 1] + 1.0 / dx_[i]); | ||
S_[i][i + 2] = 1.0 / dx_[i + 1]; | ||
} | ||
Matrix Up_(n_, 2, 0.0); | ||
Up_[0][0] = 1; | ||
Up_[n_ - 1][1] = 1; | ||
Matrix Us_(n_, n_ - 2, 0.0); | ||
for (Size i = 0; i < n_ - 2; ++i) | ||
Us_[i + 1][i] = 1; | ||
Matrix Z_ = Us_ * inverse(T_ * Us_); | ||
Matrix I_(n_, n_, 0.0); | ||
for (Size i = 0; i < n_; ++i) | ||
I_[i][i] = 1; | ||
Matrix V_ = (I_ - Z_ * T_) * Up_; | ||
Matrix W_ = Z_ * S_; | ||
Matrix Q_(n_, n_, 0.0); | ||
Q_[0][0] = 1.0 / (n_ - 1) * dx_[0]; | ||
Q_[0][1] = 1.0 / 2 * 1.0 / (n_ - 1) * dx_[0]; | ||
for (Size i = 1; i < n_ - 1; ++i) { | ||
Q_[i][i - 1] = 1.0 / 2 * 1.0 / (n_ - 1) * dx_[i - 1]; | ||
Q_[i][i] = 1.0 / (n_ - 1) * dx_[i] + 1.0 / (n_ - 1) * dx_[i - 1]; | ||
Q_[i][i + 1] = 1.0 / 2 * 1.0 / (n_ - 1) * dx_[i]; | ||
} | ||
Q_[n_ - 1][n_ - 2] = 1.0 / 2 * 1.0 / (n_ - 1) * dx_[n_ - 2]; | ||
Q_[n_ - 1][n_ - 1] = 1.0 / (n_ - 1) * dx_[n_ - 2]; | ||
Matrix J_ = (I_ - V_ * inverse(transpose(V_) * Q_ * V_) * transpose(V_) * Q_) * W_; | ||
Array D_ = J_ * Y_; | ||
for (Size i = 0; i < n_ - 1; ++i) | ||
tmp_[i] = (Y_[i + 1] - Y_[i]) / dx_[i] - (2.0 * D_[i] + D_[i + 1]) * dx_[i] / 6.0; | ||
tmp_[n_ - 1] = tmp_[n_ - 2] + D_[n_ - 2] * dx_[n_ - 2] + | ||
(D_[n_ - 1] - D_[n_ - 2]) * dx_[n_ - 2] / 2.0; | ||
} | ||
|
||
void cubicInterpolationSplineParabolic(Array& tmp_, | ||
std::vector<Real>& dx_, | ||
std::vector<Real>& S_, | ||
Size n_) { | ||
// intermediate points | ||
for (Size i = 1; i < n_ - 1; ++i) | ||
tmp_[i] = (dx_[i - 1] * S_[i] + dx_[i] * S_[i - 1]) / (dx_[i] + dx_[i - 1]); | ||
// end points | ||
tmp_[0] = ((2.0 * dx_[0] + dx_[1]) * S_[0] - dx_[0] * S_[1]) / (dx_[0] + dx_[1]); | ||
tmp_[n_ - 1] = | ||
((2.0 * dx_[n_ - 2] + dx_[n_ - 3]) * S_[n_ - 2] - dx_[n_ - 2] * S_[n_ - 3]) / | ||
(dx_[n_ - 2] + dx_[n_ - 3]); | ||
} | ||
|
||
void cubicInterpolationSplineFritschButland(Array& tmp_, | ||
std::vector<Real>& dx_, | ||
std::vector<Real>& S_, | ||
Size n_) { | ||
// intermediate points | ||
for (Size i = 1; i < n_ - 1; ++i) { | ||
Real Smin = std::min(S_[i - 1], S_[i]); | ||
Real Smax = std::max(S_[i - 1], S_[i]); | ||
if (Smax + 2.0 * Smin == 0) { | ||
if (Smin * Smax < 0) | ||
tmp_[i] = QL_MIN_REAL; | ||
else if (Smin * Smax == 0) | ||
tmp_[i] = 0; | ||
else | ||
tmp_[i] = QL_MAX_REAL; | ||
} else | ||
tmp_[i] = 3.0 * Smin * Smax / (Smax + 2.0 * Smin); | ||
} | ||
// end points | ||
tmp_[0] = ((2.0 * dx_[0] + dx_[1]) * S_[0] - dx_[0] * S_[1]) / (dx_[0] + dx_[1]); | ||
tmp_[n_ - 1] = | ||
((2.0 * dx_[n_ - 2] + dx_[n_ - 3]) * S_[n_ - 2] - dx_[n_ - 2] * S_[n_ - 3]) / | ||
(dx_[n_ - 2] + dx_[n_ - 3]); | ||
} | ||
|
||
void cubicInterpolationSplineAkima(Array& tmp_, | ||
std::vector<Real>& dx_, | ||
std::vector<Real>& S_, | ||
Size n_) { | ||
tmp_[0] = | ||
(std::abs(S_[1] - S_[0]) * 2 * S_[0] * S_[1] + | ||
std::abs(2 * S_[0] * S_[1] - 4 * S_[0] * S_[0] * S_[1]) * S_[0]) / | ||
(std::abs(S_[1] - S_[0]) + std::abs(2 * S_[0] * S_[1] - 4 * S_[0] * S_[0] * S_[1])); | ||
tmp_[1] = | ||
(std::abs(S_[2] - S_[1]) * S_[0] + std::abs(S_[0] - 2 * S_[0] * S_[1]) * S_[1]) / | ||
(std::abs(S_[2] - S_[1]) + std::abs(S_[0] - 2 * S_[0] * S_[1])); | ||
for (Size i = 2; i < n_ - 2; ++i) { | ||
if ((S_[i - 2] == S_[i - 1]) && (S_[i] != S_[i + 1])) | ||
tmp_[i] = S_[i - 1]; | ||
else if ((S_[i - 2] != S_[i - 1]) && (S_[i] == S_[i + 1])) | ||
tmp_[i] = S_[i]; | ||
else if (S_[i] == S_[i - 1]) | ||
tmp_[i] = S_[i]; | ||
else if ((S_[i - 2] == S_[i - 1]) && (S_[i - 1] != S_[i]) && (S_[i] == S_[i + 1])) | ||
tmp_[i] = (S_[i - 1] + S_[i]) / 2.0; | ||
else | ||
tmp_[i] = (std::abs(S_[i + 1] - S_[i]) * S_[i - 1] + | ||
std::abs(S_[i - 1] - S_[i - 2]) * S_[i]) / | ||
(std::abs(S_[i + 1] - S_[i]) + std::abs(S_[i - 1] - S_[i - 2])); | ||
} | ||
tmp_[n_ - 2] = (std::abs(2 * S_[n_ - 2] * S_[n_ - 3] - S_[n_ - 2]) * S_[n_ - 3] + | ||
std::abs(S_[n_ - 3] - S_[n_ - 4]) * S_[n_ - 2]) / | ||
(std::abs(2 * S_[n_ - 2] * S_[n_ - 3] - S_[n_ - 2]) + | ||
std::abs(S_[n_ - 3] - S_[n_ - 4])); | ||
tmp_[n_ - 1] = | ||
(std::abs(4 * S_[n_ - 2] * S_[n_ - 2] * S_[n_ - 3] - 2 * S_[n_ - 2] * S_[n_ - 3]) * | ||
S_[n_ - 2] + | ||
std::abs(S_[n_ - 2] - S_[n_ - 3]) * 2 * S_[n_ - 2] * S_[n_ - 3]) / | ||
(std::abs(4 * S_[n_ - 2] * S_[n_ - 2] * S_[n_ - 3] - 2 * S_[n_ - 2] * S_[n_ - 3]) + | ||
std::abs(S_[n_ - 2] - S_[n_ - 3])); | ||
} | ||
|
||
void cubicInterpolationSplineKruger(Array& tmp_, | ||
std::vector<Real>& dx_, | ||
std::vector<Real>& S_, | ||
Size n_) { | ||
// intermediate points | ||
for (Size i = 1; i < n_ - 1; ++i) { | ||
if (S_[i - 1] * S_[i] < 0.0) | ||
// slope changes sign at point | ||
tmp_[i] = 0.0; | ||
else | ||
// slope will be between the slopes of the adjacent | ||
// straight lines and should approach zero if the | ||
// slope of either line approaches zero | ||
tmp_[i] = 2.0 / (1.0 / S_[i - 1] + 1.0 / S_[i]); | ||
} | ||
// end points | ||
tmp_[0] = (3.0 * S_[0] - tmp_[1]) / 2.0; | ||
tmp_[n_ - 1] = (3.0 * S_[n_ - 2] - tmp_[n_ - 2]) / 2.0; | ||
} | ||
|
||
void cubicInterpolationSplineHarmonic(Array& tmp_, | ||
std::vector<Real>& dx_, | ||
std::vector<Real>& S_, | ||
Size n_) { | ||
// intermediate points | ||
for (Size i = 1; i < n_ - 1; ++i) { | ||
Real w1 = 2 * dx_[i] + dx_[i - 1]; | ||
Real w2 = dx_[i] + 2 * dx_[i - 1]; | ||
if (S_[i - 1] * S_[i] <= 0.0) | ||
// slope changes sign at point | ||
tmp_[i] = 0.0; | ||
else | ||
// weighted harmonic mean of S_[i] and S_[i-1] if they | ||
// have the same sign; otherwise 0 | ||
tmp_[i] = (w1 + w2) / (w1 / S_[i - 1] + w2 / S_[i]); | ||
} | ||
// end points [0] | ||
tmp_[0] = ((2 * dx_[0] + dx_[1]) * S_[0] - dx_[0] * S_[1]) / (dx_[1] + dx_[0]); | ||
if (tmp_[0] * S_[0] < 0.0) { | ||
tmp_[0] = 0; | ||
} else if (S_[0] * S_[1] < 0) { | ||
if (std::fabs(tmp_[0]) > std::fabs(3 * S_[0])) { | ||
tmp_[0] = 3 * S_[0]; | ||
} | ||
} | ||
// end points [n-1] | ||
tmp_[n_ - 1] = | ||
((2 * dx_[n_ - 2] + dx_[n_ - 3]) * S_[n_ - 2] - dx_[n_ - 2] * S_[n_ - 3]) / | ||
(dx_[n_ - 3] + dx_[n_ - 2]); | ||
if (tmp_[n_ - 1] * S_[n_ - 2] < 0.0) { | ||
tmp_[n_ - 1] = 0; | ||
} else if (S_[n_ - 2] * S_[n_ - 3] < 0) { | ||
if (std::fabs(tmp_[n_ - 1]) > std::fabs(3 * S_[n_ - 2])) { | ||
tmp_[n_ - 1] = 3 * S_[n_ - 2]; | ||
} | ||
} | ||
} | ||
|
||
void cubicInterpolationSplineMonotonicFilter(Array& tmp_, | ||
std::vector<Real>& dx_, | ||
std::vector<Real>& S_, | ||
Size n_, | ||
std::vector<bool>& monotonicityAdjustments_) { | ||
Real correction; | ||
Real pm, pu, pd, M; | ||
for (Size i = 0; i < n_; ++i) { | ||
if (i == 0) { | ||
if (tmp_[i] * S_[0] > 0.0) { | ||
correction = tmp_[i] / std::fabs(tmp_[i]) * | ||
std::min<Real>(std::fabs(tmp_[i]), std::fabs(3.0 * S_[0])); | ||
} else { | ||
correction = 0.0; | ||
} | ||
if (correction != tmp_[i]) { | ||
tmp_[i] = correction; | ||
monotonicityAdjustments_[i] = true; | ||
} | ||
} else if (i == n_ - 1) { | ||
if (tmp_[i] * S_[n_ - 2] > 0.0) { | ||
correction = | ||
tmp_[i] / std::fabs(tmp_[i]) * | ||
std::min<Real>(std::fabs(tmp_[i]), std::fabs(3.0 * S_[n_ - 2])); | ||
} else { | ||
correction = 0.0; | ||
} | ||
if (correction != tmp_[i]) { | ||
tmp_[i] = correction; | ||
monotonicityAdjustments_[i] = true; | ||
} | ||
} else { | ||
pm = (S_[i - 1] * dx_[i] + S_[i] * dx_[i - 1]) / (dx_[i - 1] + dx_[i]); | ||
M = 3.0 * | ||
std::min(std::min(std::fabs(S_[i - 1]), std::fabs(S_[i])), std::fabs(pm)); | ||
if (i > 1) { | ||
if ((S_[i - 1] - S_[i - 2]) * (S_[i] - S_[i - 1]) > 0.0) { | ||
pd = (S_[i - 1] * (2.0 * dx_[i - 1] + dx_[i - 2]) - | ||
S_[i - 2] * dx_[i - 1]) / | ||
(dx_[i - 2] + dx_[i - 1]); | ||
if (pm * pd > 0.0 && pm * (S_[i - 1] - S_[i - 2]) > 0.0) { | ||
M = std::max<Real>(M, 1.5 * std::min(std::fabs(pm), std::fabs(pd))); | ||
} | ||
} | ||
} | ||
if (i < n_ - 2) { | ||
if ((S_[i] - S_[i - 1]) * (S_[i + 1] - S_[i]) > 0.0) { | ||
pu = (S_[i] * (2.0 * dx_[i] + dx_[i + 1]) - S_[i + 1] * dx_[i]) / | ||
(dx_[i] + dx_[i + 1]); | ||
if (pm * pu > 0.0 && -pm * (S_[i] - S_[i - 1]) > 0.0) { | ||
M = std::max<Real>(M, 1.5 * std::min(std::fabs(pm), std::fabs(pu))); | ||
} | ||
} | ||
} | ||
if (tmp_[i] * pm > 0.0) { | ||
correction = tmp_[i] / std::fabs(tmp_[i]) * std::min(std::fabs(tmp_[i]), M); | ||
} else { | ||
correction = 0.0; | ||
} | ||
if (correction != tmp_[i]) { | ||
tmp_[i] = correction; | ||
monotonicityAdjustments_[i] = true; | ||
} | ||
} | ||
} | ||
} | ||
|
||
Real cubicInterpolatingPolynomialDerivative( | ||
Real a, Real b, Real c, Real d, Real u, Real v, Real w, Real z, Real x) { | ||
return (-((((a - c) * (b - c) * (c - x) * z - (a - d) * (b - d) * (d - x) * w) * | ||
(a - x + b - x) + | ||
((a - c) * (b - c) * z - (a - d) * (b - d) * w) * (a - x) * (b - x)) * | ||
(a - b) + | ||
((a - c) * (a - d) * v - (b - c) * (b - d) * u) * (c - d) * (c - x) * | ||
(d - x) + | ||
((a - c) * (a - d) * (a - x) * v - (b - c) * (b - d) * (b - x) * u) * | ||
(c - x + d - x) * (c - d))) / | ||
((a - b) * (a - c) * (a - d) * (b - c) * (b - d) * (c - d)); | ||
} | ||
|
||
} // namespace detail | ||
|
||
} // namespace QuantLib |
Oops, something went wrong.