Skip to content

Commit

Permalink
more cleanup
Browse files Browse the repository at this point in the history
  • Loading branch information
riccardobrasca committed Jul 3, 2024
1 parent 393777d commit 923925e
Show file tree
Hide file tree
Showing 4 changed files with 1 addition and 36 deletions.
5 changes: 0 additions & 5 deletions FltRegular/CaseII/AuxLemmas.lean
Original file line number Diff line number Diff line change
Expand Up @@ -44,11 +44,6 @@ lemma WfDvdMonoid.multiplicity_finite_iff {M : Type*} [CancelCommMonoidWithZero
· intro ⟨hx, hy⟩
exact WfDvdMonoid.multiplicity_finite hx hy

lemma WfDvdMonoid.multiplicity_eq_top_iff {M : Type*} [CancelCommMonoidWithZero M] [WfDvdMonoid M]
[DecidableRel (fun a b : M ↦ a ∣ b)] {x y : M} :
multiplicity x y = ⊤ ↔ IsUnit x ∨ y = 0 := by
rw [multiplicity.eq_top_iff_not_finite, WfDvdMonoid.multiplicity_finite_iff, or_iff_not_and_not]

lemma dvd_iff_multiplicity_le {M : Type*}
[CancelCommMonoidWithZero M] [DecidableRel (fun a b : M ↦ a ∣ b)] [UniqueFactorizationMonoid M]
{a b : M} (ha : a ≠ 0) : a ∣ b ↔ ∀ p : M, Prime p → multiplicity p a ≤ multiplicity p b := by
Expand Down
20 changes: 0 additions & 20 deletions FltRegular/FltThree/Edwards.lean
Original file line number Diff line number Diff line change
Expand Up @@ -260,26 +260,6 @@ theorem prod_map_natAbs {s : Multiset ℤ} :
map_one' := rfl
map_mul' := fun x y => Int.natAbs_mul x y } : ℤ →* ℕ)

theorem factors_unique_prod :
∀ {f g : Multiset (ℤ√(-3))},
(∀ x ∈ f, OddPrimeOrFour (Zsqrtd.norm x).natAbs) →
(∀ x ∈ g, OddPrimeOrFour (Zsqrtd.norm x).natAbs) →
Associated f.prod.norm g.prod.norm →
(f.map (Int.natAbs ∘ Zsqrtd.norm)) = (g.map (Int.natAbs ∘ Zsqrtd.norm)) :=
by
intro f g hf hg hassoc
refine factors_unique_prod' ?_ ?_ ?_
· intro x hx
rw [Multiset.mem_map] at hx
obtain ⟨y, hy, rfl⟩ := hx
exact hf y hy
· intro x hx
rw [Multiset.mem_map] at hx
obtain ⟨y, hy, rfl⟩ := hx
exact hg y hy
· simp_rw [← Multiset.map_map, prod_map_natAbs, prod_map_norm, ← Int.associated_iff_natAbs]
exact hassoc

/-- The multiset of factors. -/
noncomputable def factorization' {a : ℤ√(-3)} (hcoprime : IsCoprime a.re a.im) :
Multiset (ℤ√(-3)) :=
Expand Down
2 changes: 0 additions & 2 deletions FltRegular/NumberTheory/Cyclotomic/MoreLemmas.lean
Original file line number Diff line number Diff line change
Expand Up @@ -127,8 +127,6 @@ theorem prime_isUnit_mul {a b : α} (h : IsUnit a) : Prime (a * b) ↔ Prime b :
let ⟨a, ha⟩ := h
ha ▸ prime_units_mul a b

theorem prime_mul_units (a : αˣ) (b : α) : Prime (b * ↑a) ↔ Prime b := by simp [Prime]

theorem prime_neg_iff {α} [CommRing α] {a : α} : Prime (-a) ↔ Prime a := by
rw [← prime_isUnit_mul isUnit_one.neg, neg_mul, one_mul, neg_neg]

Expand Down
10 changes: 1 addition & 9 deletions FltRegular/NumberTheory/Hilbert92.lean
Original file line number Diff line number Diff line change
Expand Up @@ -451,13 +451,6 @@ def unitlifts (S : systemOfUnits p G (NumberField.Units.rank k + 1)) :
Fin (NumberField.Units.rank k + 1) → Additive (𝓞 K)ˣ :=
fun i ↦ Additive.ofMul (Additive.toMul (S.units i).out').out'

lemma norm_map_inv (z : K) : Algebra.norm k z⁻¹ = (Algebra.norm k z)⁻¹ := by
by_cases h : z = 0
rw [h]
simp
apply eq_inv_of_mul_eq_one_left
rw [← map_mul, inv_mul_cancel h, map_one]

lemma unitlifts_spec (S : systemOfUnits p G (NumberField.Units.rank k + 1)) (i) :
mkG (Additive.toMul <| unitlifts p hp hKL σ hσ S i) = S.units i := by
delta unit_to_U unitlifts
Expand Down Expand Up @@ -680,8 +673,7 @@ lemma Hilbert92ish_aux1 (n : ℕ) (H : Fin n → Additive (𝓞 K)ˣ) (ζ : (
have hcoe : ((algebraMap (𝓞 K) K) ((algebraMap (𝓞 k) (𝓞 K)) ((ζ ^ a)⁻¹).1)) =
algebraMap (𝓞 k) (𝓞 K) ((ζ ^ a)⁻¹).1 := rfl
simp only [toMul_sum, toMul_zsmul, zpow_neg, Units.val_mul, Units.coe_prod, map_mul, map_prod,
Units.coe_zpow, map_mul, map_prod, norm_map_inv, norm_map_zpow,
Units.coe_map]
Units.coe_zpow, map_mul, map_prod, norm_map_zpow, Units.coe_map]
rw [← map_zpow, Units.coe_map_inv]
simp only [RingHom.toMonoidHom_eq_coe, MonoidHom.coe_coe]
have hcoe1 :
Expand Down

0 comments on commit 923925e

Please sign in to comment.